Library

Export 3069 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Street Gangs
Sanjaya Wijeratne, Lakshika Balasuriya, Derek Doran, Amit Sheth. Word Embeddings to Enhance Twitter Gang Member Profile Identification. In IJCAI Workshop on Semantic Machine Learning (SML 2016). New York City, NY: CEUR-WS; 2016. p. 18-24.  (265.83 KB) (6.23 MB)
Lakshika Balasuriya. Finding Street Gang Member Profiles on Twitter. Computer Science and Engineering. [Dayton]: Wright State University; 2017. p. 67.
Lakshika Balasuriya. Finding Street Gang Member Profiles on Twitter. Department of Engineering & Computer Science. [Dayton]: Wright State University; 2017. p. 67.  (2.57 MB)
Lakshika Balasuriya, Sanjaya Wijeratne, Derek Doran, Amit Sheth. Finding Street Gang Members on Twitter. In 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2016). San Francisco, CA, USA; 2016. p. 685-692.  (2.02 MB)
Streams and Drifts
Roberto Lourenco, Adriano Veloso, Adriano Pereira, Wagner Meira, Renato Ferreira, Srinivasan Parthasarthy. Economically-efficient Sentiment Stream Analysis. 37th international ACM SIGIR Conference on Research & Development in Information Retrieval. Gold Coast, Australia: ACM; 2014. p. 637-646.
streamline computation
Gerik Scheuermann, Hans Hagen, Thomas Wischgoll. Parallel Detection of Closed Streamlines in Planar Flows. International Conference on Visualization, Imaging, and Image Processing. 2001 ;:84-88.
Gerik Scheuermann, Thomas Wischgoll. Parallel Computation of the Topological Skeleton of Vector Fields. High Performance Computing (HPC 2003) Symposium. 2003 ;:139-144.
Storm damage projection
Lan Lin, Aldo Dagnino, Derek Doran, Swapna Gokhale. Data Analytics for Power Utility Storm Planning. 6th International Conference on Knowledge Discovery and Information Retrieval. Rome, Italy; 2014.  (240.43 KB)
Stock Market prediction
Ugur Kursuncu, Manas Gaur, Usha Lokala, Krishnaprasad Thirunarayan, Amit Sheth, Ismailcem Budak Arpinar. Predictive Analysis on Twitter: Techniques and Applications. In Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. Dayton: Springer; 2018. p. 39-79.  (514.1 KB)
statistical request patterns
Nathan Rude, Derek Doran. Request Type Prediction for Web Robot and Internet of Things Traffic. 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). Miami, FL: IEEE; 2015. p. 995 - 1000.
Statistical Equivalence
Kalpa Gunaratna, Krishnaprasad Thirunarayan, Prateek Jain, Amit Sheth, Sanjaya Wijeratne. A Statistical and Schema Independent Approach to Identify Equivalent Properties on Linked Data. 9th International Conference on Semantic Systems (I-SEMANTICS). Graz, Austria; 2013. p. 33-40.  (1.86 MB) (635.53 KB)
statistical analysis
Nathan Rude, Derek Doran. Request Type Prediction for Web Robot and Internet of Things Traffic. 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). Miami, FL: IEEE; 2015. p. 995 - 1000.
SSW
Amit Sheth, Cory Henson, Cory Henson, Amit Sheth, Satya S. Sahoo. Semantic Sensor Web. In Semantic Interoperability Community of Practice (SICoP): Sensor Standards Harmonization WG; 2008.
Cory Henson, Satya S. Sahoo. Sensor Networks Survey. In daytaOhio; 2007.  (8.53 MB)
Cory Henson. Sensor Data and Perception: Can Sensors Play 20 Questions?. Dagstuhl Seminar 10042: Semantic Challenges in Sensor Networks. Dagstuhl, Germany: Schloss Dagstuhl; 2010.  (250.48 KB)
Cory Henson, Amit Sheth. Semantic Sensor Web. 2008 ;.  (8.17 MB)
Cory Henson. Sensor Data Management. In 2007.  (4.89 MB)
SROIQ
Markus Krotzsch, Frederick Maier, Adila Alfa Krisnadhi, Pascal Hitzler. A Better Uncle For OWL - Nominal Schemas for Integrating Rules and Ontologies. In International World Wide Web Conference (WWW2011). New York: Proceedings of the 20th International World Wide Web Conference (WWW2011); 2011.  (406.28 KB)
spectral analysis
Sharma S, Chen K. PrivateGraph: A Cloud-Centric System for Spectral Analysis of Large Encrypted Graphs. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). Atlanta,GA,USA; 2017. p. 2507-2510.  (450.54 KB)
Spatiotemporal Thematic Metadata Extraction
Cartic Ramakrishnan, Amit Sheth, M. Kwan, E. L. Usery, Ismailcem Budak Arpinar, M. Azami. Geospatial Ontology Development and Semantic Analytics. Transactions in GIS. 2006 ;:551-575.  (752.65 KB)
Spatio-temporalthematic analysis
Ugur Kursuncu, Manas Gaur, Usha Lokala, Krishnaprasad Thirunarayan, Amit Sheth, Ismailcem Budak Arpinar. Predictive Analysis on Twitter: Techniques and Applications. In Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. Dayton: Springer; 2018. p. 39-79.  (514.1 KB)
Spatio-temporal-thematic Querying
Amit Sheth, Matthew Perry. Traveling the Semantic Web through Space, Theme and Time. IEEE Educational Activities Department. 2008 ;:81-86.  (749.75 KB)
spatio-temporal-thematic analysis of social data
Amit Sheth. Analysis and Monetization of Social Data. In Analysis and Monetization of Social Data. 2009.
Spatio-temporal-thematic analysis
Hemant Purohit, Andrew Hampton, Shreyansh Bhatt, Valerie Shalin, Amit Sheth, John Flach. Identifying Seekers and Suppliers in Social Media Communities to Support Crisis Coordination. Journal of Computer-Supported Cooperative Works (JCSCW). 2014 ;23(4-6):513-545.
Amit Sheth, Hemant Purohit, Gary Alan Smith, Jeremy Brunn, Ashutosh Jadhav, Pavan Kapanipathi, Chen Lu, Wenbo Wang. Twitris: A System for Collective Social Intelligence. In: Reda Alhajj, Jon Rokne. Encyclopedia of Social Network Analysis and Mining. 2nd ed. New York: Springer-Verlag New York; 2018. p. 1-23.  (1.18 MB)
Amit Sheth, Ashutosh Jadhav, Pavan Kapanipathi, Chen Lu, Hemant Purohit, Gary Alan Smith, Wenbo Wang. Twitris: A System for Collective Social Intelligence. In: Reda Alhajj, Jon Rokne. Encyclopedia of Social Network Analysis and Mining. 1st ed. New York: Springer-Verlag New York; 2014. p. 2240-2253.  (2.21 MB)
spatio-temporal semantic web
Matthew Perry, Prateek Jain, Amit Sheth. SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries. In Geospatial Semantics and the Semantic Web. New York: Springer; 2011. p. 61-86.  (518.48 KB)

Pages