An Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-Constrained Devices

TitleAn Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-Constrained Devices
Publication TypeConference Paper
Year of Publication2012
AuthorsCory Henson, Krishnaprasad Thirunarayan, Amit Sheth
Conference Name11th International Semantic Web Conference
Pagination149-164
Date Published11/2012
PublisherSpringer
Conference LocationBoston, MA
KeywordsMachine Perception, Mobile Device, Resource-Constrained Environments, Semantic Perception, Semantic Sensor Web, sensor data
Abstract

The primary challenge of machine perception is to define efficient computational methods to derive high-level knowledge from low-level sensor observation data. Emerging solutions are using ontologies for expressive representation of concepts in the domain of sensing and perception, which enable advanced integration and interpretation of heterogeneous sensor data. The computational complexity of OWL, however, seriously limits its applicability and use within resource-constrained environments, such as mobile devices. To overcome this issue, we employ OWL to formally define the inference tasks needed for machine perception - explanation and discrimination - and then provide efficient algorithms for these tasks, using bit-vector encodings and operations. The applicability of our approach to machine perception is evaluated on a smart-phone mobile device, demonstrating dramatic improvements in both efficiency and scale.

DOI10.1007/978-3-642-35176-1_10
Full Text

Additional Resources:

Projects: 
Semantic Web