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MOTIVATION



Motivation

Sentiment Analysis (SA)

# Extract the opinion (P, N or NEU).
# Examples:

◦ The Spanish simply have the best national anthem, P

◦ The Spanish national anthem , P
◦ #ITAESP look at the bad weather, N
◦ #ITAESP look at the weather , N

Emojis are a relevant part:

# Adequate emoji sentiment lexicon is required.



Problem description

Existence of some emoji sentiment lexica:
# created from manual annotations [KNSSM15].

◦ considered as gold-standard.
# created from automatic annotations [LAL16, KK17, FJGCG18].

◦ evaluation performed comparing with a gold-standard.

Problems:
# each new emoji→ new manual annotations (gold-standard).
# different emotional emoji meanings across languages→

new manual annotations for each language (gold-standard).
# anomalies between annotators can be found for a language.

How can we solve these problems?



DATASET



Dataset

Use of the multilingual annotated dataset from [KNSSM15]:
# written in 15 different languages (EN, ES, PT, etc.).
# manually annotated over 3 months.
# self-agreement (Alphas) and inter-agreement (Alphai)

values reported in [MGS16].

Emoji Sentiment Ranking lexicon proposed as "universal" (esr)
# emoji sentiment lexicon can be created for each language.



Dataset (II)

Focusing on Albanian, English, Polish and Spanish subsets:

Dataset #emojis Label #Tweets %

Albanian Negative 17 14.53%
Alphas � 0.447 48 Neutral 40 34.19%
Alphai � 0.126 Positive 60 51.28%
English Negative 2,935 27.59%

Alphas � 0.739 624 Neutral 2,677 25.16%
Alphai � 0.613 Positive 5,027 47.25%

Polish Negative 638 27.59%
Alphas � 0.757 369 Neutral 919 24.27%
Alphai � 0.571 Positive 2,229 58.87%
Spanish Negative 1,022 16.85%

Alphas � 0.245 613 Neutral 3,431 26.89%
Alphai � 0.121 Positive 8,306 65.10%

Rannotatedal

Rannotateden

Rannotatedpo

Rannotatedes



DETECTING INCONSISTENT ANNOTA-
TIONS



Previous assumptions

In general, an emoji should have:
# same emotional meaning in datasets written in a language.
# different emotional meanings across different languages.

However, for the most popular emojis [BKRS16]:
# their semantics are strongly correlated in most languages.
# people interpret them in an universal way:

◦ high correlation between languages.
◦ strong differences may persist for some of them.

Hypothesis, for the most popular emojis:
◦ their sentiments in a language may differ from "universal"

one, but they are close in most cases.



Checking our hypothesis for detecting anomalies

So, correlations of the most popular entries between:
# ESR lexicon (universal), denoted by Rannotatedall ; and
# ESL of each language.

should be:
# high⇒ consistent annotations.
# low⇒ inconsistent annotations.

Correlations of top 100 emojis ranked by score and occurrence

Lexicon x Lexicon y rscore (x, y) rrank (x, y)

Rannotatedall
Rannotateden 93.57% 89.46%
Rannotatedpo 88.74% 86.40%
Rannotatedes 34.07% 37.35%
Rannotatedal

36.37% 39.30%



ALTERNATIVE SOLUTION FOR LEXICA
GENERATION



Alternative solution for lexica generation

Method for constructingESLautomaticallyusing SA [FJGCG18]:

Applied on EN and ES datasets:
# E1en and E1es : automatic usspad annotations.
# E2en and E2es : also considers Emojipedia definitions.



Checking the alternative solution for lexica creation

Correlations of the most popular entries between variants and:
# a particular language ESL, or
# the ESR considered as "universal".

Lexicon x Lexicon y rscore (x, y) rrank (x, y)

E1en Rannotateden 82.91% 76.20%
Rannotatedall

79.70% 75.25%
E2en Rannotateden 83.72% 79.37%

Rannotatedall
86.90% 80.71%

E1es Rannotatedes 47.19% 47.18%
Rannotatedall

74.93% 74.78%
E2es Rannotatedes 30.06% 44.09%

Rannotatedall
81.32% 79.07%



Checking with SA the new alternative lexica

How these language subsets can influence the overall lexicon?

An independent evaluation of E1en , E1es , E2en , E2es is needed.
# lexica variants checked in a real-world scenario with SA.
# SA measures applied on P and N classes.

◦ precision (Pmacro), recall (Rmacro), F (Fmacro).

Following our assumption, for the most popular emojis:
# most messages containing them→ similar results with any

lexica



Checking with SA the new alternative lexica (II)

So, to check our variants, we need:
# a subset of a consistent dataset with only popular emojis.
# to apply SA using usspad on this subset with the emoji

lexica.

Dataset Lexicon Pmacro Rmacro Fmacro

English B Rannotateden 76.16% 69.45% 72.65%
E2en 75.49% 69.20% 72.21%
E1en 67.95% 67.74% 67.85%
E2es 73.01% 67.84% 70.33%
E1es 66.98% 67.89% 67.43%
Rannotatedes 56.42% 62.04% 59.10%



CONCLUSIONS



Conclusions

Assumptions:

# a poorly labeled dataset may affect emoji lexica quality.
# annotators do not always publish quality metrics.

So, it is difficul to determine if:
◦ bad SA performance is due to the supporting lexicon, or
◦ the SA technique itself.

Contributions:

# a method to detect low-quality annotations of tweet
datasets written in a particular language containing emojis.

# a fully automated unsupervised approach to generate
lexica with good quality.

# a method to validate lexica created automatically.
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