NEW METHODOLOGIES TO EVALUATE THE CONSISTENCY OF EMOJI SENTIMENT LEXICA AND ALTERNATIVES TO GENERATE THEM IN A FULLY AUTOMATIC UNSUPERVISED WAY

1ST INTERNATIONAL WORKSHOP ON EMOJI UNDERSTANDING AND APPLICATIONS IN SOCIAL MEDIA

Milagros Fernández-Gavilanes GTI Research Group

Stanford (California), June 25th, 2018

Table of contents

- 1. Motivation
- 2. Dataset
- 3. Detecting inconsistent annotations
- 4. Alternative solution for lexica generation
- 5. Conclusions
- 6. References

MOTIVATION

Motivation

Sentiment Analysis (SA)

- O Extract the opinion (P, N or NEU).
- O Examples:
 - The Spanish simply have the best national anthem, P
 - The Spanish national anthem , P
 - #ITAESP look at the bad weather, N
 - #ITAESP look at the weather 🤼, N

Emojis are a relevant part:

Adequate emoji sentiment lexicon is required.

Problem description

Existence of some emoji sentiment lexica:

- created from manual annotations [KNSSM15].
 - o considered as gold-standard.
- created from automatic annotations [LAL16, KK17, FJGCG18].
 - evaluation performed comparing with a gold-standard.

Problems:

- \bigcirc each new emoji \rightarrow new manual annotations (gold-standard).
- different emotional emoji meanings across languages → new manual annotations for each language (gold-standard).
- o anomalies between annotators can be found for a language.

How can we solve these problems?

DATASET

Dataset

Use of the multilingual annotated dataset from [KNSSM15]:

- written in 15 different languages (EN, ES, PT, etc.).
- manually annotated over 3 months.
- o self-agreement ($Alpha_s$) and inter-agreement ($Alpha_i$) values reported in [MGS16].

Emoji Sentiment Ranking lexicon proposed as "universal" (ESR)

o emoji sentiment lexicon can be created for each language.

Dataset (II)

Focusing on Albanian, English, Polish and Spanish subsets:

Dataset	#emojis	Label	#Tweets	%	
Albanian		Negative	17	14.53%	
$Alpha_s = 0.447$	48	Neutral	40	34.19%	
$Alpha_i = 0.126$		Positive	60	51.28%	
English		Negative	2,935	27.59%	
$Alpha_s = 0.739$	624	Neutral	2,677	25.16%	
$Alpha_i = 0.613$		Positive	5,027	47.25%	
Polish		Negative	638	27.59%	
$Alpha_s = 0.757$	369	Neutral	919	24.27%	
$Alpha_i = 0.571$		Positive	2,229	58.87%	
Spanish		Negative	1,022	16.85%	
$Alpha_s = 0.245$	613	Neutral	3,431	26.89%	
$Alpha_i = 0.121$		Positive	8,306	65.10%	

 $R_{annotated_{\it al}}$

R_{annotateden}

R_{annotatedpo}

Rannotatedes

DETECTING INCONSISTENT ANNOTA-TIONS

Previous assumptions

In general, an emoji should have:

- o same emotional meaning in datasets written in a language.
- different emotional meanings across different languages.

However, for the **most popular emojis** [BKRS16]:

- their semantics are **strongly correlated in most languages**.
- people interpret them in an universal way:
 - high correlation between languages.
 - strong differences may persist for some of them.

Hypothesis, for the most popular emojis:

 their sentiments in a language may differ from "universal" one, but they are close in most cases.

Checking our hypothesis for detecting anomalies

So, correlations of **the most popular entries** between:

- \bigcirc ESR lexicon (universal), denoted by $R_{annotated_{all}}$; and
- ESL of each language.

should be:

- \bigcirc high \Rightarrow consistent annotations.
- \bigcirc low \Rightarrow inconsistent annotations.

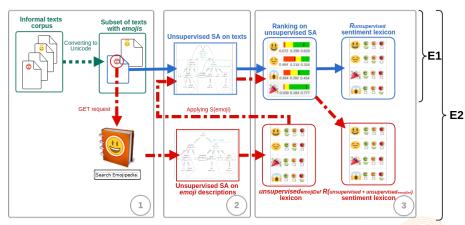
Correlations of top 100 emojis ranked by score and occurrence

Lexicon <i>x</i>	Lexicon y	$r_{score}(x, y)$	$r_{rank}(x, y)$
R _{annotatedall}	R _{annotateden}	93.57%	89.46%
	R _{annotatedpo}	88.74%	86.40%
	R _{annotatedes}	34.07%	37.35%
	R _{annotated} al	36.37%	39.30%

ALTERNATIVE SOLUTION FOR LEXICA GENERATION

Alternative solution for lexica generation

Method for constructing ESL automatically using SA [FJGCG18]:



Applied on EN and ES datasets:

- \bigcirc $E1_{en}$ and $E1_{es}$: automatic USSPAD annotations.
- \bigcirc $E2_{en}$ and $E2_{es}$: also considers Emojipedia definitions.

Checking the alternative solution for lexica creation

Correlations of the most popular entries between variants and:

- \bigcirc a particular language ESL, or
- the ESR considered as "universal".

Lexicon x	Lexicon y	$r_{score}(x, y)$	$r_{rank}(x, y)$	
E1 _{en}	R _{annotateden}	82.91%	76.20%	
	R _{annotated} all	79.70%	75.25%	
E2 _{en}	R _{annotateden}	83.72%	79.37%	
	R _{annotated} all	86.90%	80.71%	
$E1_{es}$	R _{annotatedes}	47.19%	47.18%	
	R _{annotated} all	74.93%	74.78%	
$E2_{es}$	R _{annotatedes}	30.06%	44.09%	
	R _{annotated} all	81.32%	79.07%	

Checking with SA the new alternative lexica

How these language subsets can influence the overall lexicon?

An **independent evaluation** of $E1_{en}$, $E1_{es}$, $E2_{en}$, $E2_{es}$ is needed.

- o lexica variants checked in a real-world scenario with SA.
- SA measures applied on P and N classes.
 - precision (P_{macro}), recall (R_{macro}), F (F_{macro}).

Following our assumption, for the most popular emojis:

 ○ most messages containing them → similar results with any lexica

Checking with SA the new alternative lexica (II)

So, to check our variants, we need:

- o a subset of a consistent dataset with only popular emojis.
- to apply SA using USSPAD on this subset with the emoji lexica.

Dataset	Lexicon	Pmacro	R _{macro}	F _{macro}
English B	R _{annotateden}	76.16%	69.45%	72.65%
	$E2_{en}$	75.49%	69.20%	72.21%
	$E1_{en}$	67.95%	67.74%	67.85%
	$E2_{es}$	73.01%	67.84%	70.33%
	$E1_{es}$	66.98%	67.89%	67.43%
	R _{annotatedes}	56.42%	62.04%	59.10%

CONCLUSIONS

Conclusions

Assumptions:

- o a poorly labeled dataset may affect emoji lexica quality.
- annotators do not always publish quality metrics.
 So, it is difficul to determine if:
 - o bad SA performance is due to the supporting lexicon, or
 - the SA technique itself.

Contributions:

- a method to detect low-quality annotations of tweet datasets written in a particular language containing emojis.
- a fully automated unsupervised approach to generate lexica with good quality.
- a method to validate lexica created automatically.

REFERENCES

References

KNSSM15: Kralj Novak, Petra & Smailović, Jasmina & Sluban, Borut & Mozetič, Igor (2015). Sentiment of Emojis.

PLOS ONE 10(12), 1 - 22.

LAL16: Lu, Xuan & Ai, Wei and Liu, Xuanzhe & Li, Qian & Wang, Ning & Huang, Gang & Mei, Qiaozhu (2016). Learning from the ubiquitous language: an empirical analysis of emoji usage of smartphone users. Proceedings of the 2016 ACM International Joint Conference on Peroasive and Ubiquitous Computing, 770 – 780.

KK17: Kimura, Mayu & Katsurai, Marie (2017). Automatic Construction of an Emoji Sentiment Lexicon.

Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
2017, 978-1-4503-4993-2 1033–1036.

FJGCG18: Milagros Fernández-Gavilanes & Jonathan Juncal-Martínez & Silvia García-Méndez & Enrique Costa-Montenegro & Fco. Javier González-Castaño (2018). Creating emoji lexica from unsupervised sentiment analysis of their descriptions.

Expert System with Application Journal 103, 74-91.

MGS16: Igor Mozetič & Miha Grčar & Jasmina Smailović (2016). Multilingual Twitter sentiment classification: The role of human annotators.

PloS one, 11(5)(5), 1-26.

BKRS16: Francesco Barbieri & Germán Kruszewski & Francesco Ronzano & Horacio Saggion (2016). How cosmopolitan are emojis?: Exploring emojis usage and meaning over different languages with distributional semantics.

In Proc. of the 2016 ACM Conf. on Multimedia Conference, MM 2016, 531-535.

Thank you for your attention

Milagros Fernández-Gavilanes mfgavilanes@gti.uvigo.es

