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1 Introduction 
Pragmatically, the logk programming paradigm 
presents a reasonable trade-off between expressive 
power and computational efficiency [9, 141. Here, 
we investigate techniques to make it more expressive 
for knowledge representation, while simultaneously 
retaining the computational advantages of efficiency 
and simplicity. In Section 1.1, we review annotated 
logic programs. In Section 1.2, we motivate the in- 
tegration of deductive and abductive reasoning. In 
Section 2, we present an informal description of the 
proposed theory of abductive reasoning for annotated 
logic programs through examples. In Section 3, we 
describe the detailed syntax and develop a model- 
theoretic semantics of annotated logic programs by 
amalgamating concepts from logic programming [l] 
and multi-valued logics [8]. We identify a class of an- 
notated logic programs called the stratijied programs 
which can be given a unique minimal supported Her- 
brand model as their meaning [21]. We then show 
how to integrate abductive reasoning into this anno- 
tated logic framework by generalizing the work de- 
scribed in [18, 191. We formalize the notion of an 
explanation, and specify when an explanation can be 
regarded as acceptable. Finally, we conclude in Sec- 
tion 5. 

1.1 Annotated Logic Programs 
[2, 31 pursued a four-valued logic approach as an al- 
ternative to classical predicate calculus to localize 
the effect of a contradiction in a first-order language. 
[24, 25, 71 used similar ideas to provide semantics 
to strict inheritance hierarchies and logic programs. 
[8] generalized it to multi-valued logics to make pre- 
cise the book-keeping operations performed by a non- 
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monotonic reasoning system that handles both strict 
and defeasible information. In all the above cases, 
the semantics is given by mapping literals to truth 
values that are ordered on two different scales - 
the truth scale and the information scale. For ex- 
ample, Tweety being a bird contributes a supporting 
evidence to its flying ability, while Tweety being a 
penguin contributes a defeating evidence. This can 
be represented by mapping f l y ( T w e e t y )  to the con- 
stants +bird and -penguin respectively. Furthermore, 
knowing that Tweety is a penguin is more informa- 
tive than knowing that it is a bird. This can be rep- 
resented by letting the constant penguin have higher 
information-content than the constant bird. 

In approaches described in [lo, 11, 12, 131, the 
underlying language is extended using annotations, 
which can be thought of as abbreviated justifications 
or pieces of evidence. Some areas of application are 
rulebased expert systems with uncertainty [lo], tem- 
poral reasoning problems [12], reasoning with incon- 
sistency [4,11], etc. In [13], we use them to represent 
nonmonotonic multiple inheritance networks. 

1.2 Integrating deductive and 

In a number of areas such as medical diagnosis 
[16, 261, fault diagnosis [22, 181, temporal reason- 
ing [23], recognition [19], planning [6], natural lan- 
guage processing 151, etc. a large fragment of rele- 
vant knowledge can be expressed by specifying the 
“causal” relationships that exist among the various 
entities. In such domains the two basic operations of 
interest for information retrieval are: 

Given a set of causes, determine their cumulative 
effect. 

e Given a set of observations, hypothesize a set 
of possible causes that can explain the observa- 
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tions. 

Reasoning from causes to effects is predominantly de- 
ductive in nature and its formalization is the subject 
matter of first-order logic and its various nonmono- 
tonic extensions. Reasoning from effects to possi- 
ble causes has been formalized through the various 
schemes for abductive reasoning. 

In medical diagnosis, the symptoms are explained 
using disease hypotheses. Similarly, in fault diagno- 
sis, the incorrect behaviour of a digital system can 
be explained by determining possible circuit faults. 
In temporal reasoning, the propositions that hold in 
the current state can be explained by determining 
a possible set of events that could have occurred. In 
the context of natural language processing, abductive 
reasoning can be used for word-sense disambiguation 
and story understanding. Furthermore, tasks like de- 
signing a treatment from a diagnosis of the disease, or 
reconfiguration to  rectify a circuit fault, or inferring 
additional properties of the current state from plau- 
sible events, all call for deductive reasoning using hy- 
pothesized explanations. So we believe that marrying 
both deductive and abductive reasoning strategies in 
a unified framework can be useful in practice. 

2 Abductive Reasoning in 
Annotated Logic Programs 

We first motivate the relevant issues through exam- 
ples. 

Consider the representation of the diagnostic 
knowledge for the “burnout problem” in an engine 
[261. 

cuphit-by-stone + stony-road, l ow-carh t .  
oil-cupholed t c u p h i t b y s t o n e .  
engine- temphigh t oil-loss, engine-started. 
oilloss - o i lxupho led .  
To formalize abduction, we need to (1) spec- 

ify the “vocabulary” for the hypotheses to account 
for the observation, and (2) make rigorous when 
a set of hypotheses can be regarded as explain- 
ing the observation. In our example, the hy- 
potheses can be constructed using facts that do 
not appear in any rule-head. An explanation can 
be thought of as a set of hypotheses that de- 
ductively implies the observation. So, the set 
{stony-road, l o w x u r h t ,  engine-started} is a 
valid explanation of the observation 
engine-temp-high. 

Consider the chemical identification problem. A 
base transforms a red litmus paper blue. Both NaOH 
and KOH are bases. Under flame test, NaOH gives a 
golden yellow flame, while KOH gives a violet flame. 
The observation that a sample changes a red litmus 
blue can be explained by the facts - the sample is a 
base, or it is NaOH, or it is KOH. However, among 
these, the explanation the sample is a base seems 
to  be the most “appropriate” by virtue of being the 
least restrictive. So, we wish to regard it as an ac- 
ceptable explanation. Furthermore, using well-known 
facts from Chemistry, one can predict through deduc- 
tive reasoning that the sample will be soapy to touch 
and would neutralize acids. Subsequently, when we 
learn the outcome of the flame test, the acceptable 
explanation can be refined to one of NaOH or KOH. 

Consider information about the flying abilities of 
birds and mammals. Typically, birds fly, while mam- 
mals do not. Similarly, bats fly, while injured-bats 
do not. This can be expressed in our formalism as 
follows: 

f l y ( X )  : +bird t b i r d ( X )  : +I 
f l y ( X )  : -mammal + m a m m u l ( X )  : +I 
fly(X) : +bat t but (X)  : +I 
f i g ( X )  : -injured-bat c i n j u r e d b a t ( X )  : +I 
Informally, the rule p : a t q : /? states that if 

there is evidence for p that is greater than or equal 
to ,B in information-content and that has the same 
truth-content as p ,  then one can confer support to  
p to the degree a. I (resp. U) is a defeasible 
(resp. strict) evidence with the least (resp. great- 
est) information-content. The symbol + (resp. -, 
*) indicates a supporting (resp. defeating, ambigu- 
ous) evidence. The evidences can be written in the 
ascending order of their information-content as I, 
mammal, bat, injured-bat and w.  bird is incomparable 
with mammal, bat and injured-bat on the information- 
scale, but it is larger than I and smaller than w .  
This ordering information can be den’ved by  inspect- 
ing the corresponding inheritance hierarchy automat- 
ically [13]. 

Given that the specimen bates is a mammal, that 
is, marnmal(butes) : +U, we wish to conclude that 
bates does not fly, that is, f ly (bates )  : -mammal. 
Subsequently, when we learn facts like bat(bates) : 
+U and injured-bat(bates) : +w, we wish to revise it 
to f ly (bates )  : +bat and f l y (ba te s )  : -injured-bat re- 
spectively. We formalize these ideas using the notion 
of a supported model. 

Given that bates does not fly, we can hypothesize 
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that bates is probably a mammal. However, if bates 
is in fact a bat, then we can explain its inability to fly 
by assuming that it is an injured-bat. Formally, the 
two plausible explanations for f ly (bates )  : -I are 
{rnarnrnal(bates) : +I} and {injured-bat(bates) : 
+I} which generate the conclusions - f ly (bates )  : 
-mammal and f ly (bates )  : -injured-bat respectively. 
However, notice that the former explanation is pre- 
ferrable to the latter one that has redundant informa- 
tion. We define the notion of acceptable explanation 
for this purpose. Furthermore, suppose we also learn 
that bat(bates) : +w holds. Then, the explanation 
{ f l y (ba te s )  : -mammal} is no longer tenable in the 
face of the “stronger” conclusion f ly (bates )  : +bat. 
So, the only (acceptable) explanation for the fact 
that bates does not fly is {injured-bat(bates) : +L}, 
which implies { f l y (ba te s )  : -injured-bat}. 

3 Annotated Logic Programs 

3.1 Syntax 

A t e rm is an individual constant or a variable, or a 
“pattern” f ( t 1 ,  . . . , tn ) ,  where f is an n-ary function 
symbol and t i ’ s  are terms. An atom is a propositional 
constant or a formula q(t1,  . . . , tn), where q is an n- 
ary predicate symbol and t i ’ s  are terms. Literals are 
of the form p : r ,  where p is an atom and r is an 
annotation drawn from the domain of annotations 
A. A rule is an expression of the form p : r +- 

q1 : 71, . . . , qm : ym where p and q are atoms and r 
and yi’s are annotations. The literal p : r is referred 
to  as the rule-head, while q1 : 71, . . . , qm : ym are 
referred to as the rule-body. A fact is a ground (i.e., 
variable-free) literal. A clause is either a fact or a 
rule. An annotated logic program is a set of clauses. 

Following [2, 3, 7, 8, 131, the annotations are or- 
dered along two different dimensions: in one, they 
are partially ordered by s t  on the basis of their 
information-content; in the other, they are related 
by an equivalence relation on the basis of their 
truth-content. We define: 

(. <t Y) iff ( r  I t  7) A ( r  # 7); and 
(7 Lit 7) iff ( r  I t  7) A ( r  zt 7)- 

Furthermore, for our purposes, we assume that szt 
has only the following three equivalence classes: C-, 
C’, and C+, corresponding to the defeating, ambigu- 
ous, and supporting evidences, respectively. 

We impose certain acyclicity restrictions on the an- 
notated logic programs for reasons that will become 

clear in the next section. This acyclicity requirement 
is analogous to the local stratification condition of 
[21] for ordinary logic programs. We formalize this 
requirement by defining a relation 4 on the ground 
literals as follows: We say that q : /? p : a 
if there is a ground instance p : a + q : /3 of a 
rule in the program P, or there is a ground instance 
p : a t r : y o f a r u l e i n P a n d q : p  +p r : r  
and 7 M t  r. We demand that, for the annotated logic 
programs of interest to us, the following restriction 
on the relation +p be met: For all annotations a and 
p, (Q : a +p q : /3) 3 (a M~ p). This condition 
prohibits recursion through negation. In the sequel, 
we refer to annotated logic programs that satisfy this 
condition as stratified annotated logic programs. 

+p 

3.2 Model-theoretic Semantics 
Let P be an annotated logic program. The domain 
27 of Herbrand interpretations of P is a collection 
of all individual constants mentioned in P, and the 
ground (variable-free) terms that can be formed from 
them; it is often called the Herbrand universe of P. A 
Herbrand base, Bp of P is a collection of all ground 
(variable-free) atoms p that use only terms of 2, and 
the predicate symbols mentioned in P. 

A Herbrand interpretation Z of P is a partial map- 
ping from the Herbrand base, BP, of P to the set of 
annotations A. Given two interpretations Z and J’, 
J’ & Z (resp., J’ Z) iff for every atom p E Bp, 
such that J’(p)  is defined, Z(p) is also defined and 
J’(P) s k  Z ( P )  (resp., J ’ b )  <tt Z(P)). An interpre- 
tation Z is minimal in a set of interpretations S if 
and only if there is no J’ E S such that J’ Ck Z 
and J’ # 2; Z is maximal if and only if there is no 
J’ E S such that Z J’ and J’ # 2. A ground 
atom p : r is satisfied in 2, denoted Z bk p : r ,  
if and only if Z(p) is defined and r s t  Z ( p ) ;  it 
is strongly satisfied in Z, denoted Z ktk p : r ,  
if also T s t k  Z ( p ) .  A ground (variable-free) rule 
p : r q1 : 71,. . . , qn : yn is satisfied in Z if 
and only if ( V i  : 1 5 i 5 n : Z ktt qi : 7i ) 
implies Z +t p : r. A nonground rule p : r t q : y 
is satisfied in Z if and only if all its ground instances 
are satisfied in Z. (A ground instance of a rule r is 
a ground rule obtained from r by replacing variables 
with elements in the Herbrand universe, where dif- 
ferent occurrences of the same variable are replaced 
by the same element.) An annotated logic program 
P is satisfied in Z, if all its clauses are satisfied in Z. 
An interpretation Z is a model of a set of clauses P if 
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and only if P is satisfied under Z. A Herbrand model 
2 of P is supported by P if for every atom p such that 
Z ( p )  is defined, we have Z ( p )  = hbk{T  I p : 7 c 
BODY is a ground instance of a rule in P and Z b t k  
BODY }. We assume that Z is undefined on any atom 
that does not appear in the head of a ground instance 
of a rule in P. Informally, Z is supported by P if the 
evidences that it assigns to atoms are not stronger 
than what is warranted by P. 

It is possible that there does not exist a single 
supported model, or that there are several different 
supported models. This is in contrast with the ordi- 
nary logic programs, and the annotated programs for 
inheritance specifications considered in [13] where a 
unique minimal supported model always exists. For 
instance, consider the following program: (p : -1 +- 

Q : +l. Q : +1 c p : +l. p : +l.) The minimal Her- 
brand model of this program is: {p : *1, Q : +l}. 
This model is not supported because q : +1 is unsup- 
ported as p : +1 is not strongly satisfied in the model. 
Similarly, the program (p : CY c Q : p. Q : p +- p : a. 
) has two supported models: {} and {p : a, Q : p}.  
However, if 5, is a semilattice (that is, every pair of 
elements has a least-upper bound) then we have the 
following result. 

Theorem 3.1 Every stratified annotated logic pro- 
gram has a unique minimal supported model. 

4 Formalization of 
Abductive Reasoning 

We now formalize abduction along the lines of [18, 
191. The abductive framework consists of three sets 
- the set P consisting of the annotated logic pro- 
gram, the set # of observations, and the set A of 
predicate names corresponding to the abducibIe liter- 
als. An observation is syntactically an atom with its 
truth value. That is, an observation is not required 
to specify the information-content of the annotation. 
The ground literals formed from A serve as possible 
hypotheses to explain the observations 0. 

We can recast the complete flying-ability-problem 
of Section 2 into the abductive framework as foilows. 
The set P is: 

f l y ( X )  : +bird t bird(X) : +I. 
fiy(X) : -mammal c m a m m a i ( X )  : +I. 
fly(X) : +bat + b a t ( X )  : +I. 
f l y ( X )  : -injured-bat c in jured-bat (X)  : +1. 
m a m m a l ( X )  : +w + b a t ( X )  : +W. 

m a m m a l ( X )  : +bat + b a t ( X )  : +I. 
b a t ( X )  : +U t in jured-bat (X)  : +w. 
b a t ( X )  : +injured-bat +- in jured-bat (X)  : +l. 
where, 1 < E  bird < k  wand I < k  mammal < k  

bat < k  injured-bat < k  w .  The first four rules 
specify conditions under which we can derive that 
an entity flies or does not fly, while the last four 
rules capture the class-subclass relationship. For in- 
stance, bats are a subclass of mammals. So if an 
entity is a bat then it is a mammal too. However 
if the entity is a bat only by default, then it is a 
mammal by default, to a degree determined by the 
evidence bat. The set A consists of the “class” names 
{ m a m m a l s ,  bats, injured-bats} .  The set 0 is ei- 
ther { fiy(ba2es) : +} or { f l y (ba te s )  : -}. 

Now we make rigorous the notion of an explana- 
tion. Informally, an explanation of an observation 0 
is a set of hypotheses H that, in conjugation with the 
program P, implies 0. 

Definition 4.1 A scenerio of (P,A,O) is a set H of 
ground literals containing only the predicates in A .  

Definition 4.2 An extension of ( P , A , O )  is the 
unique minimal supported model associated with P U 
H ,  where H is a scenerio of P .  

Definition 4.3 An explanation of 0 in ( P , A , O )  
is a scenerio H such that the observations 0 are 
strongly satisfied (that is, < E t )  in the extension of 
P U H .  

In our exampie, the observation f ly (bates )  : - can 
be explained by the two scenerios: {marnrnal(bates) : 
+I} and {injured_bat(Lates) : +I}. Similazly, 
the observation f ly (bates )  : + can be explained 
by the scenerio {bat(bates)  : +L}. Notice that, 
the scenerio {mammal(bates)  : +I} is a “better” 
explanation of f l d b a t e s )  : - than the scenerio 
{ in juredbat (bates )  : +I} because the latter ex- 
planation makes much “stronger” assumptions about 
the object in question than the former. To filter out 
such intuitively unsatisfactory explanations from all 
possible explanations the notion of acceptability is 
developed. 

As a first cut, we say that an explanation H of 0 
in ( P , A , O )  is acceptable if there does not exist an- 
other explanation H‘ such that H’ Ckt H. But, this 
definition is unsatisfactory because, it does not rule 
out the scenerios such as { injured-bat(bates)  : +I} 
as unacceptable. (Note that the literals correspond- 
ing to the predicates mammal  and i n j u r e d b a t  are 
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incomparable wrt < k t . )  w e  can attempt fixing this 
flaw by asserting that, an explanation H of 0 is ac- 
ceptable if there does not exist another explanation 
H’ such that extension(H’) Ckt extension(H). This 
criterion rules out the scenerio {injured-bat(bates) : 
+I} as unacceptable in the presence of the scene- 
rio ( m a m m a ~ ( 6 a t e s )  : +l}. However, this approach 
does not work in general as illustrated below: Given 
an abductive framework ( { p  : +1 t q : a ,  p : +2 t 
r : p} ,  { q , r } ,  { p  : +}), the above criterion does 
not unequivocally prefer the explanation { q  : a }  over 
the explanation { r  : p}  as the literals corresponding 
to the atoms q and r are not related. This analysis 
leads us to the following final definition of accept- 
ability that concentrates on the strength of evidence 
supporting ihe explained observations. 

Definition 4.4 A n  explanation H of 0 in ( P , A , O )  
is acceptable if and only if there does not exist an- 
other explanation H‘ such that extension(H’)lo Ckt 
extension(H)IO, where El0 stands for the eztension 
E restricted t o  the observation literals. 

The extension corresponding to the explanation 
{mamrnal(bates) : +I} contains f ly (bates )  : 
-mammal, while that corresponding to the explana- 
tion {injured-bat(bates) : +I} contains f ly (bates )  : 
-injured-bat. Thus, the scenerio {mammal(bates)  : 
+I} is the acceptable explanation of the observation 
f ly (bates )  : -. Similarly, for the abductive frame- 
work €, the explanation { q  : +a} is acceptable, while 
the explanation { r  : +p} is not. 

In case we also know the following facts: 
h a i r y ( X )  : +mammal t mammal(X) : +I. 
w i n g e d ( X )  : -mammal t b a t ( X )  : +1. 
w i n g e d ( X )  : +bat e b a t ( X )  : +1. 

then, {mammal (ba te s )  : +I} supports 
{hairy(bates )  : +mammal, winged(bates) : 

-mammal}, 
and {injured-bat(bates) : +I} supports 
{hairy(bates )  : +mammal, winged(bates) : 
+injured-bat}. 

This illustrates how abductive reasoning allows us 
to generate explanations from observations, and how 
deductive reasoning can generate further predictions 
in this integrated framework [18, 231. 

There can be several acceptable explanations for 
a particular observation depending on the underly- 
ing semi-lattice structure. For instance, consider the 
framework 3 = p : p c r : ( { p  : a +- q : y, 
71, {q ,r l ,  {PI). 

0 If a ~1 p xt +, but they are unrelated wrt < k ,  
then there are two acceptable explanations for 
p : +, namely, { q  : y} and { r  : T } .  

explanation for p : +, namely, { q  : 7). 
0 If a < t k  p, then there is only one acceptable 

0 If a & p, but they are unrelated wrt < k ,  then 
there is one acceptable explanation for p : + and 
one acceptable explanation for p : -. 

5 Conclusion 
In this paper, we extended the annotated language of 
[13] in various directions to obtain an enriched repre- 
sentation language. In particular, we permitted rule- 
bodies to be conjunction of literals, and the rules to 
be recursive. We identified a class of annotated logic 
programs called the stratified programs which can be 
given a unique supported minimal Herbrand model as 
their meaning. We then smoothly integrated abduc- 
tive reasoning into this annotated logic framework by 
generalizing the work described in [18, 191. We for- 
malized the notion of an explanation, and specified 
when an explanation can be regarded as acceptable. 

The literals in our language do not contain vari- 
ables as annotations, in contrast with that in [12]. 
As a consequence, the annotation in the rule-head 
does not explicitly depend on the annotations in the 
rule-body. The semantics of in [12] is also different 
from our interpretation of it here. Similarly, we differ 
from the approach of [20] in that we do not interpret 
annotations probabilistically. 
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