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Abstract

We present a new method for mapping ontology schemas that
address similar domains. The problem of ontology mapping
is crucial since we are witnessing a decentralized develop-
ment and publication of ontological data. We formulate the
problem of inferring a match between two ontologies as a
maximum likelihood problem, and solve it using the tech-
nique of expectation-maximization (EM). Specifically, we
adopt directed graphs as our model for ontologies and use
a generalized version of EM to arrive at a mapping between
the nodes of the graphs. We exploit the structural and lexical
similarity between the graphs, and improve on previous ap-
proaches by generating a many-one correspondence between
the concept nodes. We provide preliminary experimental re-
sults in support of our method and outline its limitations.

Introduction
The growing popularity of the semantic Web is fueled in
part by the development and publication of an increasing
number of ontologies. Because the development of these
ontologies is occurring in a decentralized manner, the prob-
lems of matching similar ontologies (alignment) and merg-
ing them into a single comprehensive ontology gain impor-
tance. Previous approaches for matching ontologies have
utilized either the instance space associated with the ontolo-
gies, the ontology schema, or both. For example, FCA-
Merge (Stumme & Maedche 2001) and IF-MAP (Kalfoglou
& Schorlemmer 2003) rely on the instances of the concepts
and documents annotated by the ontologies to generate the
mappings. While FCA-Merge applies linguistic techniques
to the instances, IF-MAP utilizes information flow concepts
for identifying the mappings. Other approaches that rely
heavily on the instance space include BayesOWL (Ding et
al. 2005) which uses the instances to learn the parameters
of the Bayesian network. The joint probability of a pair of
concepts is used as a similarity measure. The FALCON-AO
system (Hu et al. 2005) on the other hand proposes metrics
for evaluating the structural similarity between the ontology
schemas to arrive at a mapping between the ontologies. In
the same vein, OMEN (Mitra, Noy, & Jaiswal 2004) proba-
bilistically infers a match between classes given a match be-
tween parents and children, using Bayesian networks. The
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GLUE system (Doan et al. 2002) uses the instances to com-
pute a similarity measure (Jaccard coefficient) between the
concepts, and feeds it to a relaxation labeler that exploits
general and domain-specific heuristics to match the ontol-
ogy schemas. The performance of systems utilizing instance
spaces is closely linked to the volume of the training data –
instances – available.

Contemporary languages for describing ontologies such
as RDF(S) and OWL allow ontologies to be modeled as
directed labeled graphs. Therefore, analogous to graph
matching techniques, the ontology matching approaches
also differ in the cardinality of the correspondence that is
generated between the ontological concepts. For exam-
ple, several of the existing approaches (Ding et al. 2005;
Hu et al. 2005; Doan et al. 2002; Mitra, Noy, & Jaiswal
2004) focus on identifying a one-one (exact) mapping be-
tween the concepts. More general are the many-one and
many-many (inexact) correspondences between the con-
cepts. These are of particular interest, since they allow map-
pings between concepts of differing semantic granularity. In
other words, a cluster of concepts may be mapped to a single
target concept. The methods that generate such correspon-
dences have wider applicability as independently developed
ontologies seldom have the same number of concepts.

We present a graph-theoretic method that generates many-
one mappings between the participating ontologies to be
matched. We focus our analysis on the ontology schemas
and use directed graphs as the underlying models for the on-
tologies. We formulate the problem as one of finding the
most likely map between two ontologies, and compute the
likelihood using the expectation-maximization (EM) tech-
nique (Dempster, Laird, & Rubin 1977). The EM technique
is typically used to find the maximum likelihood estimate of
the underlying model from observed data containing miss-
ing values. In our formulation, we treat the set of correspon-
dences between the pair of ontologies to be matched as hid-
den variables, and define a mixture model over these corre-
spondences. The EM algorithm revises the mixture models
iteratively by maximizing a weighted sum of the log likeli-
hood of the models. The weights, similar to the general EM
algorithm, are the posterior probabilities of the hidden corre-
spondences. Within the EM approach, we exploit the struc-
tural as well as the lexical similarity between the schemas
to compute the likelihood of a map. While analogous ap-
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proaches for graph matching appear in computer vision (Luo
& Hancock 2001), these are restricted to unlabeled graphs.

The particular form of the mixture models in our formu-
lation precludes a closed form expression for the log likeli-
hood. Subsequently, standard maximization techniques such
as (partial) differentiation are intractable. Instead, we adopt
the generalized version of the EM (Dempster, Laird, & Ru-
bin 1977) which relaxes the maximization requirement and
simply requires the selection of a mixture model that im-
proves on the previous one. Since the complete space of
candidate mixture models tends to be large and to avoid local
maximas, we randomly sample a representative set of mix-
ture models and select the candidate from among them. To
speed up convergence, we supplement the sampled set with
locally improved estimates of the mixture models that ex-
ploit simple mapping heuristics. We evaluate our approach
on example benchmark ontology pairs that were obtained
from the I3CON repository (Hughes & Ashpole 2004).

Background: Expectation-Maximization
The expectation-maximization (EM) technique was origi-
nally developed by Dempster et al. (1977) to find the maxi-
mum likelihood estimate of the underlying model from ob-
served data instances in the presence of missing values. The
main idea behind the EM technique is to compute the ex-
pected values of the hidden or missing variable(s) using the
observed instances and a previous estimate of the model, and
then recompute the parameters of the model using the ob-
served and the expected values as if they were observations.

Let X be the set of observed instances, M the underlying
model, and Y be the set of missing or hidden values. The
expectation step is a weighted summation of the log likeli-
hood, where the weights are the conditional probabilities of
the missing variables:

E Step: Q(Mn+1|Mn) =
∑

y∈Y

Pr(y|X,Mn)L(Mn+1|X, y)

where L(Mn+1|X, y) is the log likelihood of the model,
computed as if the value of the hidden variable is known.
The logarithm is used for simplifying the likelihood compu-
tation.

The maximization step consists of selecting the model
that maximizes the expectation:

M Step: Mn+1
∗ = argmax

Mn+1∈M
Q(Mn+1|Mn)

The above two steps are repeated until the model para-
meters converge. Each iteration of the algorithm is guar-
anteed to increase the log likelihood of the model estimate,
and therefore the algorithm is guaranteed to converge to ei-
ther the local or global maxima (depending on the vicinity
of the start point to the corresponding maxima).

Often, in practice, it is difficult to obtain a closed form
expression in the E step, and consequently a maximizing
Mn+1 in the M step. In this case, we may replace the
original M step with the following: Select Mn+1 such that
Q(Mn+1|Mn) ≥ Q(Mn|Mn). The resulting generalized
EM (GEM) method (Dempster, Laird, & Rubin 1977) re-
tains the convergence property of the original algorithm,
while improving its applicability.

Ontology Model
Contemporary languages for describing ontologies – cate-
gorized as description logics – include RDF and OWL. Both
these languages allow the ontologies to be modeled as di-
rected labeled graphs (Hayes & Gutierrez 2004) where the
nodes of the graphs are the concepts (classes in RDF) and
the labeled edges are the relationships (properties) between
the classes. Following graph matching terminology, we as-
sume the graph with the larger number of nodes to be the
data while the other as the model graph. Formally, let the
data graph be Od = 〈Vd, Ed, Ld〉, where Vd is the set of
labeled vertices representing the concepts, Ed is the set of
edges representing the relations which is a set of ordered 2-
subsets of Vd, and Ld : Ed → ∆ where ∆ is a set of labels,
gives the edge labels. Analogously, Om = 〈Vm, Em, Lm〉
is the model graph against which the data graph is matched.

B

C

A
y

x

AB C

yx
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Figure 1: The process of reification. (a) An edge labeled graph.
(b) The reified bipartite graph in which each distinct edge label is a
node, and additional dummy nodes are introduced to preserve the
relations. These nodes may have identical labels.

To facilitate graph matching, we transform the edge-
labeled graphs into unlabeled ones by elevating the edge la-
bels to first class citizens. This process, called reification, in-
volves treating the relationships as resources, thereby adding
them as nodes to the graph. We observe that reification be-
comes unnecessary, from the perspective of graph matching,
when all edges have the same labels. We illustrate reifica-
tion using a simple example in Fig. 1 and point out that the
reified graph is a bipartite graph (Hayes & Gutierrez 2004).
Consequently, the functions Ld in Od and Lm in Om be-
come redundant. However, reification comes at a price: The
reified graph contains as many additional nodes as the num-
ber of edges and distinct edge labels.

Graph Matching Using GEM
As we mentioned previously, we model the ontologies as
graphs, Od and Om, and consequently focus on the graph
matching problem. Let M be a |Vd| × |Vm| matrix that rep-
resents the match between the two graphs. In other words,

M =





m11 m12 . . . m1|Vm|
m21 m22 . . . m2|Vm|
. . . . . .
. . . . . .
. . . . . .
m|Vd|1 m|Vd|2 . . . m|Vd||Vm|





Here each assignment variable,

maα =
{

1 if f(xa) = yα : xa ∈ Vd, yα ∈ Vm,

0 otherwise
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If the correspondence, f : Vd → Vm, is a one-one map-
ping and {xa, xb} ∈ Ed ⇔ {f(xa), f(xb)} ∈ Em, then f
is an isomorphism. We call the property of preserving edges
across transformations as edge consistency. The correspon-
dence f is a homomorphism if it is a many-one or many-
many mapping, and is edge consistent. In this paper, we fo-
cus on tractably generating homomorphisms with many-one
mappings.

We formulate the graph matching as a maximum likeli-
hood (ML) problem. Specifically, we are interested in the
match matrix, M , that gives us the maximum conditional
probability of the data graph, Od, given the model graph,
Om and the match assignments. Formally,

M∗ = argmax
M∈M

Pr(Od|Om,M) (1)

where M is the set of all match assignments. In general,
there may be 2|Vd||Vm| different matrices, but by restricting
our analysis to many-one correspondences – these may be
partial – we reduce the search space to (|Vm|+ 1)|Vd|. As is
common, we may assume the data graph nodes to be condi-
tionally independent, and sum over the model graph nodes
using the law of total probability.

Pr(Od|Om,M) = Π
xa∈Vd

∑
yα∈Vm

Pr(xa|yα,M)Pr(yα|M)

= Π
xa∈Vd

∑
yα∈Vm

Pr(xa|yα,M)πα

where πα = Pr(yα|M) is the prior probability of the model
graph vertex, yα, given the mixture model, M .

In order to solve the ML problem, we note that the cor-
respondence, f , is hidden from us. Additionally, if we view
each assignment variable, maα, as a model, then the matrix
M may be treated as a mixture model. Consequently, the
mixture model, M , is parameterized by the set of the con-
stituent assignment variables. Both these observations mo-
tivate the formulation of an EM technique to compute the
model with the maximum likelihood.

E Step
We start our analysis by formulating a conditional expecta-
tion of the log likelihood with respect to the hidden variables
given the data graph and a guess of the mixture model, Mn.

Q(Mn+1|Mn) = E

[
log Pr(xa|yα,Mn+1)πn+1

α |xa,Mn

]

(2)
The expectation may be rewritten as a weighted summation
of the log likelihood with the weights being the posterior
probabilities of the hidden correspondences under the matrix
of assignment variables at iteration n. Equation 2 becomes:

Q(Mn+1|Mn) =
∑|Vm|

α=1

∑|Vd|
a=1 Pr(yα|xa,Mn)logPr(

xa|yα,Mn+1) +
∑|Vm|

α=1

∑|Vd|
a=1 Pr(yα|xa,Mn)log πn+1

α
(3)

Next, we address the computation of each of the terms
in Eq. 3. We first focus on the posterior, Pr(yα|xa,Mn).
Once we establish a method of computation for this term, the
generation of log Pr(xa|yα,Mn+1) follows analogously.

Using Bayes theorem Pr(yα|xa,Mn) may be rewritten,

Pr(yα|xa,Mn) =
Pr(xa|yα,Mn)πn

α∑|Vm|
α=1 Pr(xa|yα,Mn)πn

α

(4)

We turn our attention to the term Pr(xa|yα,Mn) in Eq. 4.
This term represents the probability that the data graph node,
xa, is in correspondence with the model graph node, yα,
under the match matrix of iteration n, Mn. Using Bayes
theorem again,

Pr(xa|yα,Mn) =
Pr(Mn|yα, xa)Pr(yα, xa)

Pr(yα,Mn)

As we mentioned before, Mn is a mixture of the models,
maα. We treat the models to be independent of each other.
This allows us to write the above equation as,

Pr(xa|yα,Mn) =
Pr(yα, xa)Π|Vd|

b=1Π
|Vm|
β=1 Pr(mn

bβ |yα, xa)

Pr(yα)Π|Vd|
b=1Π

|Vm|
β=1 Pr(mn

bβ |yα)

We note that,

Pr(mn
bβ |yα, xa) =

Pr(xa|yα,mn
bβ)Pr(mn

bβ |yα)
Pr(xa|yα)

Substituting this into the numerator of the previous equation
results in,

Pr(xa|yα,Mn) = [ 1
Pr(xa|yα) ]

|Vd||Vm|−1

×Π|Vd|
b=1Π

|Vm|
β=1 Pr(xa|yα,mn

bβ)
(5)

We first focus on the term Pr(xa|yα,mn
bβ), which repre-

sents the probability that xa is in correspondence with yα

given the assignment model, mbβ . As we mentioned pre-
viously, mbβ is 1 if xb is matched with yβ under the corre-
spondence f , otherwise it is 0. Let us call the set of nodes
that are adjacent to xa as its neighborhood, N (xa). Since
we seek f to be a homomorphism that must be edge consis-
tent, for each vertex, x ∈ N (xa), the corresponding vertex,
f(x) ∈ N (yα). Therefore, the probability of xa being in
correspondence with yα is dependent, in part, on whether
the neighborhood of xa is mapped to the neighborhood of
yα under f . Several approaches for schema matching and
graph matching (Luo & Hancock 2001) are based on this
observation. To formalize this, we introduce EC:

EC =
{

1 〈xa, xb〉 ∈ Ed ∧ 〈yα, yβ〉 ∈ Em ∧ mbβ = 1
0 otherwise

(6)
In addition to the structural similarity, Pr(xa|yα,mn

bβ) is
also influenced by the lexical similarity between the concept
labels of the nodes xa and yα.

Pr(xa|yα,mn
bβ) = (1 − Pε(xa, yα))ECPε(xa, yα)1−EC

(7)
Here Pε : Vd × Vm → [0, 1] is the correspondence error

based on the lexical similarity of the node labels. We address
the computation of Pε later in this paper.

In the term Pr(xa|yα) in Eq. 5, xa is independent of yα in
the absence of the mixture model. Therefore, Pr(xa|yα) =
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Pr(xa) whose value depends only on the identity of the
node, xa. In this paper, we assume this distribution to be
uniform. Substituting Eqs. 5 and 7 into Eq. 4, we get,

Pr(yα|xa,Mn) = Ca[ 1
Pr(xa|yα) ]

|Vd||Vm|−1

×Π|Vd|
b=1Π

|Vm|
β=1 (1 − Pε(xa, yα))ECPε(xa, yα)1−EC

(8)

where Ca is the normalizing constant and EC is as in Eq. 6.
We now look at the log likelihood term,

log Pr(xa|yα,Mn+1), in Eq. 3. The computation of
this term follows a similar path as before, with the differ-
ence being that we use the new mixture model, Mn+1.
Analogous to Eq. 5, we get,

log Pr(xa|yα,Mn+1) = log

[
1

Pr(xa|yα) ]
|Vd||Vm|−1

×Π|Vd|
b=1Π

|Vm|
β=1 Pr(xa|yα,mn+1

bβ )
]

The presence of the log considerably simplifies the above.

log Pr(xa|yα,Mn+1) = (|Vd||Vm| − 1)log 1
Pr(xa|yα)+∑|Vd|

b=1

∑|Vm|
β=1 log Pr(xa|yα,mn+1

bβ )

Pr(xa|yα,mn+1
bβ ) may be computed analogously to Eq. 7.

M Step
The maximization step involves choosing the mixture
model, Mn+1

∗ , that maximizes Q(Mn+1|Mn), shown in
Eq. 3. This mixture model then becomes the input for the
next iteration of the E-step. However, the particular formu-
lation of the E step and the structure of the mixture model
make it difficult to carry out the maximization. Therefore,
we relax the maximization requirement and settle for a mix-
ture model, Mn+1

∗ , that simply improves the Q value. As we
mentioned before, this variant of the EM technique is called
the generalized EM.

Mn+1
∗ = Mn+1 ∈ M : Q(Mn+1|Mn) ≥ Q(Mn|Mn)

(9)
The priors, πn+1

α , for each α are those that maxi-
mize Eq. 3. We focus on maximizing the second term,∑|Vm|

α=1

∑|Vd|
a=1 Pr(yα|xa,Mn)log πn+1

α , of the equation.
Differentiating it partially with respect to πn+1

α , and setting
the resulting expression to zero results in,

πn+1
α =

1
|Vd|

|Vd|∑

a=1

Pr(yα|xa,Mn)

The term Pr(yα|xa,Mn) was computed previously in
Eq. 4. We use πn+1

α in the next iteration of the E step.

Lexical Similarity
We compute the correspondence error, Pε, between a pair
of data graph and model graph nodes (Eq. 7) as one minus
the normalized lexical similarity between their respective la-
bels. Under the umbrella of edit distance, several metrics for
computing the similarity between strings, such as n-grams,
Jaccard, and sequence alignment exist. We use the Smith-
Waterman (SW) sequence alignment algorithm (Smith &

Waterman 1981) for calculating the lexical similarity be-
tween the node labels. The SW algorithm may be imple-
mented as a fast dynamic program and requires a score for
the similarity between two characters as the input. We as-
sign a 1 if the two characters in consideration are identical
and 0 otherwise. The algorithm generates the optimal local
alignment by storing the maximum similarity between each
pair of segments of the labels, and using it to compute the
similarity between longer segments. We normalize the out-
put of the SW algorithm by dividing it with the length of the
longer of the two labels.

Random Sampling with Local Improvements
In this section, we address the computation of the mixture
model, Mn+1

∗ , that satisfies the inequality in Eq. 9. We ob-
serve that an exhaustive search of the complete model space
is infeasible due to its large size – there are (|Vm| + 1)|Vd|

many distinct mixture models. On the other hand, both the
EM and its generalization, GEM, are known to often con-
verge to the local maxima (Dempster, Laird, & Rubin 1977)
(instead of the global) when the search space for selecting
Mn+1

∗ is parsimonious. This suggests that any technique for
generating Mn+1

∗ should attempt to cover as much of the
model space as possible, while maintaining tractability.

A straightforward approach for generating Mn+1
∗

is to randomly sample K mixture models, M̂ =
{M (1),M (2), · · · ,M (K)}, and select the one as Mn+1

∗ that
satisfies the constraint in Eq. 9. We sample the models by
assuming a flat distribution over the model space. The set
of samples, M̂, may be seen as a representative of the com-
plete model space. However, since there is no guarantee that
a sample within the sample set will satisfy the constraint in
Eq. 9, we may have to sample several M̂, before a suitable
mixture model is found. This problem becomes especially
severe when the model space is large and a relatively small
number of samples, K, is used.

In order to reduce the number of M̂s that are discarded,
we exploit intuitive heuristics that guide the generation of
Mn+1. For example, if Mn exhibits mappings between
some subclasses in the two graphs, then match their respec-
tive parents, to generate a candidate Mn+1. For the case
where a subclass has more than one parent, lexical similar-
ity is used to resolve the conflict. This and other general
and domain-specific heuristics have been used previously
in (Doan et al. 2002; Mitra, Noy, & Jaiswal 2004) where
they were shown to be effective. However, a simple exam-
ple, Fig. 2, demonstrates that solely utilizing such a heuris-
tic is insufficient to generate all the mappings. To minimize
the convergence to local maximas, we augment the set of
heuristically generated mixture models with those that are
randomly sampled. In this manner, not only do we select
candidate mixture models that have a better chance of satis-
fying Eq. 9, but also cover the model space.

Computational Complexity
We first analyze the complexity of computing
Q(Mn+1|Mn) which forms the E step. From Eq. 8, the
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Figure 2: An illustration of the mappings generated by the heuris-
tic – if at least one pair of subclasses is matched, then match the
respective parents. (a) Mn (b) Mappings after multiple applica-
tions of the heuristic. Unless we combine the heuristic with others,
no more mappings can be generated and a local maxima is reached.

complexity of the posterior, Pr(yα|xa,Mn), is a combina-
tion of the complexity of computing EC, the correspondence
error (Pε), and the term [ 1

Pr(xa|yα) ]
|Vd||Vm|−1. We observe

that EC may be computed through a series of look-up op-
erations, and is therefore of constant time complexity. The
complexity of calculating Pε, dependent on the algorithm for
arriving at the lexical similarity, is O(l2) for the SW tech-
nique, where l is the length of the largest concept label. The
complexity of the exponential term is O(log2|Vd||Vm| − 1).
Hence the computational complexity of the posterior is
O(log2|Vd||Vm|−1)+O(|Vd||Vm|)+O(l2) = O(|Vd||Vm|).
The computational complexity of the log likelihood term
is also O(|Vd||Vm|), because its computation proceeds
analogously. Since the product of these terms is summed
over |Vd||Vm|, the final complexity of the E step is
O([|Vd||Vm|]2). In the M step, if we generate K sam-
ples within a sample set, the worst case complexity is
O(K[|Vd||Vm|]2). 1

Experiments
We analyze the performance of our methods on example on-
tology pairs obtained from the I3CON Repository (Hughes
& Ashpole 2004). These ontologies are expressed in the
N3 language – an experimental non-XML variant of RDF.
While, a good match accuracy is of utmost importance, we
also focus on the computational resources consumed in ar-
riving at the match. We utilize a partial and modified sub-
set of the Weapons ontologies for a detailed analysis of our
methods. In Fig. 3(a) we show the match produced by the
GEM algorithm. We utilized the random sampling com-
bined with heuristic improvement to generate Mn+1 at each
step of the iteration. To illustrate the need for considering
graph structure while matching, we also show the match ob-
tained by using just the lexical similarity between concept
labels (Fig. 3(b)). We point out that the many-one homo-
morphism in Fig. 3(a) mapped both PT Boat and Missile
Boat nodes of the data graph to the Fast Attack Craft node

1For edge-labeled graphs, the complexity of the reification step
is O(|E|log2|E|) where |E| is the number of edges in the graph.
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Figure 3: Utility of considering structure while matching. (a) The
mappings generated by our GEM method (recall: 100%; precision:
90% – 1 false-positive). (b) Mappings generated using only the
lexical similarity between concept labels (recall = 77.8%; precision
= 63.6%). The dashed lines in bold are the incorrect matches.

of the model graph. This illustrates a subsumption match
because the former concepts are encompassed by the latter.

In Fig. 4(a) we show the performance (recall) profile of
the GEM with random sampling. Each data point in the plots
is an average of 10 independent runs, and our seed mixture
model (M0) contained a single match between the Tank Ve-
hicle nodes of both ontologies. As we increase the size of the
sample sets (from 100 to 1,000 samples), we obtain a greater
recall at each iteration. This is because a larger percentage of
the complete search space (≈ 109 models) is covered. How-
ever, from Fig. 4(c), we observe that the running time over
all the iterations also increases as the sample size increases.
To measure the effectiveness of random sampling, we also
provide the total number of sample sets, M̂, that were gen-
erated over all the iterations. For 100 samples, an average
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Method Metric K=100 K=500 K=1000 K=5000

Random Time 3m 39.29s ± 4m 19.09s 19m 26.46s ± 19m 24.5s 23m 25s ± 16m 42.63s *

sampling Sample sets 570 ± 666 373 ± 368 376 ± 264 *

Sampling with Time 10.3s ± 1.7s 48.12 ± 11.2s 1m 50.6s ± 24.11s 8m 41.3s ± 1m 22.46s

local improvements Sample sets 26 ± 5 25 ± 6 27 ± 6 27 ± 4
(c)

Figure 4: Performance profiles of the GEM method on Weapons ontologies. (a) Random sampling was used for generating the next Mn+1.
(b) A combination of heuristic and random sampling is used for generating Mn+1. (c) The total running times (JDK 1.5 program on a dual
processor Xeon 2.1GHz, 4GB RAM, and Linux) and sample sets generated over all the iterations.

of 57 sample sets per iteration were generated before a satis-
ficing Mn+1 was found, while an average of 38 sample sets
were used per iteration for 1,000 samples. On including the
heuristic (Fig. 2) in addition to random sampling during the
optimization step, we obtain the performance profiles shown
in Fig. 4(b). The heuristic not only improves the recall but
also significantly reduces the number of sample sets gen-
erated and therefore the time consumed in performing the
iterations (Fig. 4(c)). While smaller size sample sets lead to
local maximas, sets of 5,000 samples produced 90%-100%
recall for all the runs. We observe that the heuristic by itself
is not sufficient: starting from our seed model, employing
just the heuristic for the optimization step leads to only a
40% recall.

In order to judge the performance of our method on more
complex ontologies, we tested it on larger subsets of the
Weapons ontologies, rooted at Conventional Weapons, and
subsets of the Network ontologies. The data and model
graphs for Weapons contained 22 and 19 nodes, respec-
tively. The GEM method combined with heuristically and
randomly generated samples converged to a match with a
recall of 100% and a precision of 86.4% in 17m 47.2s with a
seed model of 10% accurate matches. The Network ontolo-
gies, in addition to containing more nodes, exhibit labeled
relationships. After performing reification using the proce-
dure illustrated in Fig. 1, both the data and model graphs
contained 19 nodes and 24 edges each. The GEM method
converged to a match with a recall and precision of 100% in
10m 53.1s with a seed model of 10% accuracy.

Conclusion and Limitations
We presented a new method for identifying mappings be-
tween ontologies that model similar domains. We formu-
lated the problem as one of finding the most likely map and
solved it iteratively using the GEM technique. We improved
on previous approaches by generating inexact matches be-
tween the ontologies; such methods have a wider applica-

bility. Our results illustrate the good performance of our
methods, but also highlight some limitations. In particular,
for large ontologies, more efficient methods are required for
performing the optimization step.
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