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1. INTRODUCTION

The concepts of (1) the “distance between two objects”,
and (2) whether or not two objects are in some sense
“close” are fundamental both as mathematical ideas in
themselves and in the many and varied applications
of mathematics to other subjects. Therefore, it is
not surprising that such ideas are important within a
number of areas of information theory and the theory
of computation.

These two concepts can be formalized as follows.
First, at a completely general level, a (generalized)
distance function d defined on a set X is simply a
mapping d : X×X → A, where A is some suitable set of
values (a value set), and the distance between x and y is
taken to be the element d(x, y) of A. Second, and again
at a completely general level, closeness can be defined
by assigning to each element x of a set X a family Ux

of subsets U of X called neighbourhoods of x; then y
can be thought of as close to x if y belongs to some
neighbourhood U of x. Under suitable restrictions these
notions are very familiar in mathematics leading on the
one hand to metrics, ultra-metrics, pseudo-metrics and
the like, and on the other hand to topologies. In turn,
these concepts have many ramifications including: (i)
fixed points of functions f defined on a set X, say, or
in other words elements x of X with the property that
f(x) = x (x and f(x) perhaps being thought of as zero
distance apart), and (ii) limits of sequences and nets (or
filters) for describing convergence.

The level of generality just considered is too high to

be useful without some conditions being imposed on
d or on A or on both d and A. Furthermore, in many
ways the notions of “distance between two objects” and
“closeness” are synonymous. Therefore, conditions on d
and A on the one hand should correspond to conditions
on the families Ux of neighbourhoods on the other.
If one asks what distance functions d are generally
appropriate in mathematical analysis, say, the answer is
relatively simple: metrics (perhaps derived from norms
on vector spaces), and families of seminorms. On the
other hand, the question of appropriate limits to the
generality of d and of A in the definition of a distance
function in relation to computation is not so easy to
answer. This is partly due to the diversity of situations
encountered in computation, and we discuss this point
in the next paragraph. One pointer in the direction
of such appropriate limits is provided by M.B Smyth
in his chapter on topology in [1] in which he discusses
observable properties. Here, one envisages a black box
outputting a binary sequence in the presence of an
observer, and it is shown that the class of properties
which the observer can verify forms a topology, called
the topology of observable properties. Furthermore,
a number of important connections between topology
and computer science are discussed in [1]. However,
useful examples of structures more general than
topologies have been encountered within the semantics
of computation, see [2]. Nevertheless, it is convenient
to take as a starting point in discussing distance
functions and families of neighbourhoods, that level of
generality which corresponds to conventional topologies
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(or equivalently, their associated neighbourhoods) and
gives an equivalence between these latter notions and
that of distance function. Therefore, our conceptual
framework can be viewed as being that of continuity
spaces and continuity functions [3], since these give
precisely the equivalence just mentioned. However, we
make no real use of continuity spaces and simply show
that each distance function we consider in the paper,
at least in the form in which we use it, actually is a
continuity function.

There are many non-trivial applications of distance
functions to computer science and information theory
in general, some of them quite old and some more
recent. Indeed, the following list is quite long, although
by no means exhaustive: the use of ultra-metrics in
the study of infinite trees by Arnold and Nivat in
[4], and their use in non-determinism in [5], see [1,
Section 6.2] for further, related examples; the use of
ultra-metrics in cognitive information, see [6, 7, 8],
in time series, see [9, 10], and in bioinformatics, see
[11, 12]; the use of metrics in studying processes
and concurrency [13], see also the articles in [14] by
Barrett and Goldsmith and by de Bakker and Rutten;
the many uses of the Hamming distance and other
(pseudo-)metrics in information theory, and elsewhere
in measuring the distance between logical formulae
(for an interesting application to neural networks,
see [15]); the use of distance functions in deriving
fixed-point theorems and their appplications to the
semantics of programs and their correctness, and the
proof of program properties; attempts to measure
the “distance” between programs, and attempts to
make quantitative statements about processing speed,
speed of convergence, and complexity of programs and
algorithms by means of partial metrics and (weighted)
quasi-metrics in quantitative domain theory; the use of
quasi-metrics in abstract interpretation, and in access
prediction in the context of replicated databases. In
Section 7, we comment further on the more recent
of these applications of distance functions, but the
reader should also consult the companion papers in this
volume for more detailed information on these and other
applications of distance functions. In addition, there is
the overall question of unifying the qualitative (order-
theoretic) view of computation and the quantitative
(distance-theoretic) view by means of suitable distance
functions, and we consider this point in Section 2.
Thus, within computing, there is a wide variety both
of distance functions of various types, and of their
applications.

We will concentrate here on the use of distance func-
tions within the semantics of computation and partic-
ularly within the semantics of logic programming, and
the reason for this is as follows. In conventional pro-
gramming language semantics, such as the denotational
semantics of functional and imperative programs, fixed
points of operators (and of functors) play an important
role, and indeed are fundamental wherever recursion

and self-reference are encountered. However, in that
context the operators which arise are usually mono-
tonic, indeed continuous. Therefore, the main fixed-
point theorem in general use in classical semantics is
the well-known Knaster-Tarski theorem based on or-
der theory, which we state as follows: if T is defined
and monotonic on a complete partial order X, then T
has a least fixed point which is also the least pre-fixed
point of T . In fact, if T is continuous, then the least
fixed point of T is the supremum of the set of iterates
Tn(⊥), where ⊥ denotes the bottom element of X, see
[16]. This latter statement is sometimes referred to as
Kleene’s theorem or the fixed point-theorem, and we
adopt this nomenclature here. Furthermore, the same
sort of representation of the least fixed point of T can
even be obtained for arbitrary monotonic T if one works
transfinitely with ordinal powers, see [17]. On the other
hand, the situation in the semantics of logic programs is
rather different. Once one introduces negation, which is
certainly desirable from the point of view of expressive-
ness and enhanced syntax, then certain of the important
operators associated with logic programs are not mono-
tonic and therefore not continuous, see Section 3, and
in consequence neither the Knaster-Tarski theorem nor
Kleene’s theorem is applicable to them. Various ways
have been proposed to overcome this problem. One
such is to introduce syntactic conditions on programs,
see [18, 19] for example, and to disallow those programs
not meeting these conditions, in an attempt to recover
continuity in the order-theoretic sense. Another is to
consider different operators, and we discuss this later.
The third main solution is to introduce techniques from
topology and analysis to augment arguments based on
order. Thus, one finds methods based on topology
([20, 21, 22, 23, 24, 25, 26]), on metrics ([27, 28, 29]),
on quasi-metrics ([30, 31]), on ultra-metrics and on d-
ultra-metrics, as we see later. Indeed, logic program-
ming semantics is a very fertile area in respect of the
use of various distance functions in its study.

Thus, the purpose of this paper is to discuss the
role of distance functions and their applications in
general within the theory of computation, with special
emphasis on logic programming semantics, including
the roles of the associated topologies and fixed-point
theorems. An especially important consideration as
we proceed is the provision of various conditions and
restrictions that one can place on distance functions,
and the corresponding effect these have on applications
within the theory of computation. This includes, in
particular, the important issue of the provision of fixed-
point theorems or, in other words, the determination of
conditions on d and A which guarantee that functions
f : X → X have fixed points. Throughout, we will
make considerable use of elementary ideas from order
theory, and we refer the reader to the text [32] for
background in this subject.3

3Ordered sets, in particular complete lattices, play a
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It is convenient to divide the paper into two parts,
Part I in which we consider, in their own right,
many of the main distance functions encountered in
the theory of computation, and Part II in which we
consider some substantial applications of these to logic
programming semantics. Thus, the structure of the
paper is as follows. In Section 2 of Part I, we
briefly summarize the result of Kopperman [3] that all
topologies come from generalized distance functions via
continuity spaces. As already noted, we view this as
providing a uniform and, for our purposes, sufficiently
general setting in which to discuss distance functions.
Following this, we consider a number of specific distance
functions, including: metrics, ultra-metrics, quasi-
metrics, generalized ultra-metrics, partial metrics, d-
ultra-metrics, and generalized metrics (in the sense
of Khamsi, Kreinovich and Misane), together with
their properties, associated fixed-point theorems, and
some general applications they have. In Part II, we
discuss the applications of some of the results of Part I
in deriving several of the important standard fixed-
point semantics encountered in logic programming,
as follows. In Section 4, we derive in detail the
semantics of Φ∗-accessible programs, an important
class containing the acceptable programs of [38]. In
Section 5, we show in summary, giving references to
the proofs, that every locally stratified program has a
supported model, and that every locally hierarchical
program has a unique supported model (its perfect
model). In Section 6, we show, again in summary,
that every locally stratified extended disjunctive logic
program (or database) admits a stable model. A
certain minimum amount of background and notation
from logic programming is needed, and this we present
in Section 3. It should be noted that the original
derivation of the various semantics just listed was
by completely different means. Therefore, what we
illustrate here is the application of distance functions in
obtaining a unified approach to the fixed-point theory
of very general and significant classes of logic programs
and databases. Finally, in Section 7, we summarize
other, recent applications of various distance functions
within the theory of computation, and in Section 8 we
present our conclusions.

The main results and applications we discuss here
involve ultra-metrics (and ultra-metric topology) or
generalized ultra-metrics. Therefore, overall, the paper
can be viewed as making a contribution to the theory
of programming languages within the general theme of

fundamental role in topics such as Formal Concept Analysis, see
[33]. In turn, the interplay between topology and order, see for
example [34], suggests a link between Formal Concept Analysis
and the topic of this paper, and indeed some use of distance
functions has already been made in Formal Concept Analysis,
see [35]. We are grateful to one of the referees for drawing our
attention to this link. At the same time, interrelations between
logic programming, Formal Concept Analysis, and domain theory
have been studied – albeit not from a metric perspective – in
[36, 37].

ultra-metric information theory.
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Part I

Generalized Distance
Functions
2. DISTANCE FUNCTIONS

In this section, we discuss distance functions in
considerable generality, including, we believe, most of
the important special cases of them arising in computer
science. It is well-known that the fixed points of
operators determined by algorithms and programs are
fundamental in studying their semantics, and hence we
include also the main fixed-point theorems associated
with the various distance functions we consider.

We begin by sketching the result of [3] that every
topology arises by means of some generalized distance
function, in the setting of continuity spaces. We refer
also to [39] and related papers where the notion of
continuity space has been developed further in a number
of directions, and to [40] for further background.

2.1. The Generality of Distance Functions

It will be convenient to start with the definition of a
topology on a set X.

Definition 2.1. By a topology T on a set X we
mean a collection of subsets of X containing the empty
set ∅ and X itself and closed under the formation of
finite intersections and arbitrary unions of its members.
Thus, ∅, X,O1 ∩ O2 and ∪i∈IOi are elements of T
whenever O1, O2 ∈ T and {Oi | i ∈ I} is any collection
of elements of T . The elements of T are called open

The Computer Journal, Vol. 00, No. 0, YYYY



4 A.K. Seda and P. Hitzler

sets. A subset U of X is called a neighbourhood of an
element x of X if there is an open set O ∈ T such that
x ∈ O ⊆ U .

Of course, neighbourhoods as defined here satisfy cer-
tain properties one might consider to be characteristic
of closeness: for example, if U is a neighbourhood of x,
there is some neighbourhood V of x such that if y ∈ V ,
then there is a neighbourhood W of y satisfying W ⊆ U .
Indeed, the concept of neighbourhood can be taken as
fundamental and that of topology as derived from it,
see [41] for details.

Take for a moment the familiar case of distance
functions d which are metrics, see Definition 2.6 and the
remark following it. Thus, the usual value set A of d in
this case is the interval [0,∞). Given some real number
ε > 0, one defines the (open) ball Nε(x) of radius ε about
a point x ∈ X by setting Nε(x) = {y ∈ X | d(x, y) < ε}.
A subset O of X is then declared to be open if, for each
x ∈ X, there is some ε > 0 such that Nε(x) ⊆ O. It
is easy to see that the collection of such open sets O
forms a topology on X. Notice that in defining “open”
sets O here, one can equivalently require Bε′(x) ⊆ O for
suitable ε′ > 0, where Bε(x) = {y ∈ X | d(x, y) ≤ ε}
denotes the (closed) ball of radius ε about a point x ∈ X.

However, it is not true that every topology on
X arises thus via a metric d, and, for example,
this statement applies to the Scott topology on a
directed complete partial order, see Definition 2.8 for
the definition of the Scott topology. Nevertheless,
as already noted every topology can be generated
by means of a suitable distance function. Indeed,
following [3], we next consider briefly the details of one
way of establishing this claim, beginning with several
definitions.

Definition 2.2. A value semigroup A is an additive
abelian semigroup with identity 0 and absorbing element
∞4, where ∞ 6= 0, satisfying the following axioms.

1. For all a, b ∈ A, if a + x = b and b + y = a for
some x, y ∈ A, then a = b.
(Note that, using this property, we can define a
partial order ≤ on A by setting a ≤ b if and only
if b = a + x for some x ∈ A; we call ≤ the partial
order induced on A by the operation +.)
2. For each a ∈ A, there is a unique b (= a

2 ) ∈ A
such that b + b = a.
3. For all a, b ∈ A, the infimum a ∧ b of a and b
exists in A relative to the partial order ≤ defined
in 1.
4. For all a, b, c ∈ A, (a ∧ b) + c = (a + c) ∧ (b + c).

Note that if {(Ai,+i, 0i,∞i) | i ∈ I} is a family of
value semigroups, then so is their product (A,+, 0,∞),
where +, 0,∞ are defined coordinatewise.

Definition 2.3. A set P of positives in a value
semigroup A is a subset P of A satisfying the following

4An element satisfying a +∞ =∞+ a =∞ for all a ∈ A.

axioms.

1. If r, s ∈ P , then r ∧ s ∈ P .
2. If r ∈ P and r ≤ a, then a ∈ P .
3. If r ∈ P , then r

2 ∈ P .
4. If a ≤ b + r for all r ∈ P , then a ≤ b.

Example 1. The set R of extended real numbers
[0,∞] together with addition forms a value semigroup,
the set (0,∞] is a set of positives for this example, and
the induced partial order ≤ is the usual one on R.

Definition 2.4 ([3]). A continuity space is a
quadruple X = (X, d, A, P ), where X is a non-empty
set, A is a value semigroup, P is a set of positives in
A, and d : X×X → A is a function, called a continuity
function, satisfying the following axioms.

(d1) For all x ∈ X, d(x, x) = 0.
(d2) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Finally, we define the topology generated by a
continuity space.

Definition 2.5. Suppose that X = (X, d, A, P ) is a
continuity space. Let x ∈ X and let b ∈ P . Then
Bb(x) = {y ∈ X | d(x, y) ≤ b} is called the ball of
radius b about x. The topology T (X ) generated by
X consists of all those subsets O of X satisfying the
property: if x ∈ O, then Bb(x) ⊆ O for some b ∈ P .

The main result concerning continuity spaces is the
following theorem.

Theorem 2.1 ([3]). Given a continuity space X =
(X, d, A, P ), the collection T (X ) of subsets of X is a
topology on X. Conversely, given a topology T on a set
X, there is a continuity space X = (X, d, A, P ) with the
property that T = T (X ).

Given a topology T on X, it is worth noting that the
continuity space X = (X, d, A, P ) with the property
that T = T (X ) used in the proof in [3] of Theorem 2.1
is obtained by taking A to be the product of T copies
of R, and P to be the product of T copies of (0,∞].
The continuity function d is defined coordinatewise by
d(x, y)(S) = dS(x, y) for each S ∈ T , where dS(x, y) =
0 if (x ∈ S implies y ∈ S), dS(x, y) = q otherwise,
where q is an element of (0,∞] fixed once and for all.

2.2. Important Cases of Distance Functions
and Corresponding Fixed-Point Theorems

The results of the previous subsection are satisfactory
in indicating the generality of distance functions, and
in providing a framework within which to discuss them.
However, it is usual to impose various conditions on
the distance functions employed in practice, and we
consider some of these next. In addition, once suitable
conditions are imposed on distance functions one can
expect to be able to establish fixed-point theorems in
their presence, and we present certain of these also. In
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fact, multivalued functions (see Section 2.2.2 for the
definition) arise in a number of places of importance
in our discussion, so some of the fixed-point theorems
we discuss are given for multivalued mappings; in
each case, they specialize to meaningful statements for
single-valued functions also.

2.2.1. Metrics, Ultra-Metrics and Quasi-Metrics
In effect, the most familiar examples of distance
functions occur in the setting obtained in Example 1
by taking the value semigroup A to be R. Of course,
the conditions (d1) and (d2) of Definition 2.4 are then
perfectly meaningful.

Definition 2.6. Let d : X ×X → [0,∞]. Consider
the following conditions on d, where x, y, z are arbitrary
elements of X.

(d3) d(x, y) = d(y, x).
(d4) d(x, y) = 0 implies x = y.
(d5) d(x, z) ≤ max{d(x, y), d(y, z)}.

We call d: a metric if it satisfies (d1) to (d4); an ultra-
metric if it satisfies (d1),(d3),(d4), and (d5); a pseudo-
metric if it satisfies (d1) to (d3); a quasi-metric if it
satisfies (d1), (d2) and the following axiom:

(d6) if d(x, y) = d(y, x) = 0, then x = y;

and an ultra-quasi-metric if it satisfies (d1),(d5),(d6).
We denote any of these structures by (X, d), where d is
any one of the distance functions just defined, and the
context will determine the exact nature of d.

In Definition 2.6, it is convenient to take the
codomain of d to be [0,∞] rather than the more usual
[0,∞). Notice also that (d5) implies (d2), and hence an
ultra-metric is a metric and, furthermore, all the notions
just defined are continuity functions. Moreover, given
a pseudo-metric d, there is a standard procedure for
passing to a metric defined on the equivalence classes of
the relation ∼ defined by x∼y if and only if d(x, y) = 0,
and it often, although not always, suffices to work
with this derived metric instead of with the pseudo-
metric. Since any metric is a quasi-metric, the main
notion emerging in this subsection for our purposes is
that of quasi-metric, and there are good reasons for
developing this notion further, as follows. First, there
are many non-trivial applications of (ultra-)metrics in
computing as already mentioned, and we will consider
more later in this paper; in a general sense, quasi-
metrics subsume these applications of (ultra-)metrics,
of course. Second, two of the main spaces used in
the semantics of programming languages are (i) metric
spaces (and the Banach contraction mapping theorem,
Theorem 2.3), see [13] for example, and (ii) Scott
domains (and the fixed-point theorem) especially, see
[42] and the many other papers of Scott on this latter
subject. Third, as indicated in the Introduction, there
has been a lot of interest in reconciling these two

spaces for denotational semantics, and quasi-metrics
have proved to be important in this respect, see [43,
44, 45] for example; see also [46] and [47] for a different
viewpoint.

For a given quasi-metric d on X, there is an
associated metric d? defined on X by d?(x, y) =
max{d(x, y), d(y, x)}. One says that (X, d) is totally
bounded if the metric space (X, d?) is totally bounded,
that is, given any ε > 0, there is a finite subset E of X
with the property that for each y in X there is an x in
E satisfying d?(x, y) ≤ ε.

There are two interesting examples of quasi-metrics
related to computer science discussed in [45] as follows;
we will return to them again later.

Example 2 ([45]). Let (D,v) be an arbitrary
partially ordered set and define d on D ×D by

d(x, y) =
{

0 if x v y,
1 otherwise.

Then d is an ultra-quasi-metric, called the discrete
quasi-metric, and is totally bounded if and only if D
is finite.

Before presenting the second example, Example 4, it
is necessary to include the definition of a domain in the
form in which we will use it later in Part II.

Definition 2.7. A partially ordered set (D,v) is
called a Scott-Ershov domain or simply a domain with
set DC of compact elements (see [16]), if the following
conditions hold.
(i) (D,v) is a directed complete partial order (dcpo),
that is, D has a bottom element ⊥, and the supremum
supA exists for all directed subsets A of D.
(ii) The elements a ∈ DC are characterized as follows:
whenever A is directed and a v supA, then a v x for
some x ∈ A.
(iii) For each x ∈ D, the set approx(x) = {a ∈ DC |
a v x} is directed and x = sup approx(x) (this property
is called algebraicity of D).
(iv) If the subset A of D is consistent (there exists
x ∈ D such that a v x for all a ∈ A), then supA exists
in D (this property is called consistent completeness of
D).

The conditions in this definition ensure the existence
and construction of fixed points of continuous functions,
and the existence of function spaces. Moreover,
the compact elements provide an abstract notion of
computability. As is well-known, domains are an
important means of providing structures for modelling
computation, and in providing spaces to support
the denotational semantics approach to understanding
programming languages, see [16].

Example 3. (i) The set of all partial functions from
Nn into N ordered by graph inclusion is a domain whose
compact elements are the finite functions.
(ii) The set (IP ,⊆) of interpretations for a logic program
P , see Section 3, is a domain whose compact elements
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are the finite subsets of BP
5.

(iii) The set (IP,3,⊆) of three-valued interpretations,
see Section 3, is a domain whose compact elements are
the pairs (C1, C2) of disjoint finite subsets of BP .

Associated with a dcpo is its Scott topology, and we
pause to give next the definition of the open sets in this
topology.

Definition 2.8. A subset O of a dcpo (D,v) is
called Scott open if it satisfies the following two
conditions: (i) O is upwards closed, that is, whenever
x ∈ O and x v y, we have y ∈ O, and (ii) whenever
A ⊆ D is directed and supA ∈ O, then A ∩O 6= ∅.

Example 4 ([45]). Let (D,v) be any Scott domain
and let r : DC → N be a map (a rank function) such
that r−1(n) is a finite set for each n ∈ N. Define d on
D ×D by

d(x, y) = inf{2−n | e ≤ x implies e ≤ y

for all e ∈ DC with r(e) ≤ n}.

Then d is an ultra-quasi-metric which induces the Scott
topology of D and (D, d) is totally bounded.

In fact, it is usually the Scott topology which is
employed to study domains. However, as we will see
in Section 2.2.2, domains can be endowed with the
structure of a spherically complete generalized ultra-
metric space. Given that there are many ultra-metrics
which are useful in theoretical computer science, as
mentioned in the Introduction and in Section 7, see also
the results we consider in Section 2.2.2, it seems likely
that generalized ultra-metric spaces, as well as quasi-
metric spaces, may well be a useful complement to the
Scott topology in studying domains.

Turning now to fixed points, we note that many
fixed-point theorems in various settings are established
by iterating on some suitable element and that the
resulting sequence is required to converge in some
sense. If this approach is to work, some notion of
completeness is required. In the case of metrics, it is the
familiar and elementary notion of completeness which
is appropriate, namely, convergence of each Cauchy
sequence. However, in the case of quasi-metrics the
situation is a bit more complicated due to the non-
symmetry of the distance function involved, and we
consider this issue next; the resulting notions collapse to

5Given a logic program P , the Herbrand base BP for P
(or more correctly for the underlying first-order language L
of P ) is the set of all ground (or variable-free) atoms which
can be formed by using predicate symbols from L with ground
terms from L as arguments. Thus, for example, if p, f , a,
and b are repectively a binary or two-place predicate symbol,
a unary or one-place function symbol, and constant symbols,
all in L, then the corresponding elements of BP are those
(infinitely many) atoms of which the following are typical:
p(a, a), p(a, b), p(b, a), p(b, b), p(f(a), a), p(a, f(a)), p(f(a), b), . . . ,
p(f(f(a)), a), p(f(f(a)), b), p(a, f(f(a))) . . . , p(f(a), f(f(a))) . . ..
The reader should consult Section 3 for further details of these
matters.

the familiar ones if the quasi-metric involved is actually
a metric or ultra-metric.

Definition 2.9. A sequence (xn) in the quasi-metric
space (X, d) is said to be:
1. forward Cauchy if, for each ε > 0, there is a natural
number k such that d(xl, xm) ≤ ε whenever k ≤ l ≤ m,
2. bi-Cauchy if, for each ε > 0, there is a natural
number k such that d(xl, xm) ≤ ε whenever k ≤ l,m.

There is also a notion of backward Cauchy sequence
which is obtained by replacing d(xl, xm) by d(xm, xl) in
the first part of this definition, though we have no need
of it here. Indeed, in [45] the point is made that the
computationally most significant of these concepts is
that of forward Cauchy, and that all three are equivalent
in the presence of total boundedness, [45, Theorem 10].

In the general context of a quasi-metric space (X, d),
the appropriate notion of “limit” of a forward Cauchy
sequence (xn) seems to be as given in [48] and [45,
Definition 11] and is as follows; it is important in the
developments made in [43, 48, 45] and also in what we
wish to discuss here, see especially Theorem 2.2.

Definition 2.10. Let (xn) be a forward Cauchy
sequence in a quasi-metric space (X, d). A point x ∈ X
is a limit of (xn), which we write as x = limn→∞ xn

or simply x = lim xn, if, for every y ∈ X, we have
d(x, y) = limn→∞ d(xn, y). The space X is said to be
complete if every forward Cauchy sequence in X has a
limit.

Note that this definition can be made for arbitrary
sequences (xn). However, for forward Cauchy sequences
(xn) it is the case that the sequence d(xn, y) is itself
Cauchy in the real line, see [48]. Thus, limn→∞ d(xn, y)
exists in the extended real line relative to the usual
metric, which is understood in Definition 2.10, and
it follows that this definition is always meaningful for
forward Cauchy sequences. Moreover, limits, in this
sense, of forward Cauchy sequences are always unique
when they exist. In [43] such limits are called metric
limits. It should be further noted that this definition
requires no underlying topology for its formulation and
indeed Smyth in [44, 45, 1] and Bonsangue et al. in [43]
have quite extensively examined the interplay between
such limits and topological limits.

We next consider some concepts applying to
mappings between quasi-metric spaces. Amongst these
is that of continuity as defined by Rutten in [48] (see
also [43]) which, as with limits, does not involve any
topology in its formulation; in [43] it is referred to as
metric continuity.

Definition 2.11. Let (X, d) be a quasi-metric space
and suppose f : X → X is a mapping. We say that:
1. f is non-expansive if, for all x, y ∈ X, we have
d(f(x), f(y)) ≤ d(x, y),
2. f is contractive or is a contraction if there exists a
positive number c < 1 such that, for all x, y ∈ X, we
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have d(f(x), f(y)) ≤ c d(x, y),
3. f is continuous if, for all forward Cauchy sequences
(xn) and x in X, whenever lim xn = x, we have
lim f(xn) = f(x).

We are now ready to give the statement of Rutten’s
theorem [48, Theorem 3.7]. First note that the
proof given by Rutten does not make essential use of
the ulta-metric condition (d5), and easily extends to
quasi-metrics, see also [49, Page 6 and Theorem 6.3].
Therefore, we state the result for quasi-metrics rather
than for ultra-quasi-metrics. Note also that if (X, d) is
a quasi-metric space, then there is an associated order
≤X induced on X by: x≤X y if and only if d(x, y) = 0.

Theorem 2.2. Let (X, d) be a complete quasi-metric
space and suppose f : X → X is non-expansive.
1. If f is continuous and there is an x in X with the
property that d(x, f(x)) = 0 (that is, x≤X f(x)), then
f has a fixed point which is the least fixed point above x
in the order ≤X .
2. If f is continuous and contractive, then f has a
unique fixed point.

Part 1 of this theorem implies Kleene’s theorem.
Furthermore, the terms “completeness” and “contrac-
tion” used in relation to quasi-metrics have their usual
meaning when specialized to metric spaces. Therefore,
Part 2 of Theorem 2.2 contains, as a special case, Ba-
nach’s well-known contraction mapping theorem which
we state next for completeness.

Theorem 2.3. (Banach) Suppose f : X → X is a
contraction on a complete metric space X. Then f has
a unique fixed point x0 which can be obtained as the
limit of the sequence (fn(x))n∈N for any x ∈ X.

Notice that neither non-expansiveness nor contractiv-
ity of f imply continuity of f in general in the sense that
continuity is employed in Theorem 2.2. Various impli-
cations between these and other concepts are examined
in [43, 48].

Because of the comment immediately following
its statement, Theorem 2.2 has turned out to
be important in reconciling the metric and order-
theoretic approaches to conventional programming
language semantics. Furthermore, both Example 2
and Example 4 have been considered in [31] in the
context of logic programming semantics by means of
Theorem 2.2. In particular, Example 2 was used in
[31] to derive the basic fixed-point properties of the
single-step operator TP for definite logic programs P ,
see Theorem 3.1. Indeed, it turns out that TP is
always non-expansive and continuous relative to the
quasi-metric of Example 2, and hence Theorem 2.2
is applicable and yields the fixed-point properties of
TP . Example 4 was used to define natural quasi-
metrics arising from logic programs, which can be
used in company with Theorem 2.2 in analyzing the
programs in question. However, we will postpone

further discussion of the applications of the results in
Part I to logic programming until we reach Part II.

2.2.2. Generalized Ultra-Metric Spaces
The next concept we introduce is that of a generalized
ultra-metric, following [50, 51]. Here, the distance
function d takes values in a partially ordered set Γ
with least element, and axioms (d1), (d3), (d4) and a
suitably modified version of (d5) hold. Specifically, we
make the following definition.

Definition 2.12. Let X be a set and let Γ be a
partially ordered set with least element 0. The pair
(X, d) is called a generalized ultra-metric space or gum
if d : X ×X → Γ is a function satisfying the following
axioms for all x, y, z ∈ X and γ ∈ Γ.
(gum1) d(x, x) = 0.
(gum2) d(x, y) = 0 implies x = y.
(gum3) d(x, y) = d(y, x).
(gum4) If d(x, y) ≤ γ and d(y, z) ≤ γ, then d(x, z) ≤ γ.

For 0 6= γ ∈ Γ and x ∈ X, the set Bγ(x) = {y ∈ X |
d(x, y) ≤ γ} is called a γ-ball or just a ball in X with
centre x and radius γ.

Notice that at the level of generality of the previous
definition, the function d this time is not a continuity
function, that is, Γ need not be a value semigroup.
However, in the applications we will actually consider,
d will indeed be a continuity function.

Once again, a suitable form of completeness is needed,
this time for generalized ultra-metrics, and this is
provided by the notion of “spherical completeness”, as
follows. A generalized ultra-metric space X is called
spherically complete if

⋂
C 6= ∅ for any chain C of

balls in X, where the term “chain of balls” means,
of course, a set of balls which is totally ordered by
inclusion. Note that for ultra-metric spaces, spherical
completeness implies completeness, but not conversely,
see [23, Proposition 10].

As mentioned earlier, we will be concerned at certain
places with fixed points of multivalued mappings, that
is, with mappings f : X → 2X , where 2X denotes the
power set of the set X. A fixed point of such a mapping
f is a point x ∈ X with the property that x ∈ f(x).
A multivalued mapping f is called non-empty if, for all
x ∈ X, f(x) 6= ∅.

Whilst the standard notion of contraction involving
a numerical constant c < 1 (see Definition 2.11) is
not available in the context of generalized ultra-metric
spaces, appropriate and useful contractivity notions for
mappings defined on such spaces can be given as follows.

Definition 2.13. A mapping f : X → X on a
generalized ultra-metric space X is called:
(i) contracting (on X) if, for all x, y ∈ X, we have
d(f(x), f(y)) ≤ d(x, y),
(ii) strictly contracting (on X) if, for all x, y ∈ X with
x 6= y, we have d(f(x), f(y)) < d(x, y),
(iii) strictly contracting on orbits if, for all x ∈ X with
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f(x) 6= x, we have d(f2(x), f(x)) < d(f(x), x).

One then has the following theorem, due to Prieß-
Crampe and Ribenboim [52].

Theorem 2.4. Let (X, d, Γ) be a spherically complete
generalized ultra-metric space and let f : X → X be
contracting on X and strictly contracting on orbits.
Then f has a fixed point. If f is strictly contracting
on X, then the fixed point is unique.

For multivalued functions, the previous definition
immediately generalizes as follows.

Definition 2.14. A multivalued mapping f : X →
2X on a generalized ultra-metric space X is called:
(i) contracting (on X) if, for all x, y ∈ X and for every
a ∈ f(x), there exists an element b ∈ f(y) such that
d(a, b) ≤ d(x, y),
(ii) strictly contracting (on X) if, for all x, y ∈ X with
x 6= y and for every a ∈ f(x), there exists b ∈ f(y) such
that d(a, b) < d(x, y),
(iii) strictly contracting on orbits if, for all x ∈ X and
for every a ∈ f(x) with a 6= x, there exists b ∈ f(a)
such that d(b, a) < d(a, x).

For a multivalued mapping f : X → 2X , let Πx =
{d(x, y) | y ∈ f(x)}, and for a subset ∆ ⊆ Γ denote by
min∆ the set of all minimal elements of ∆.

The main theorem here is as follows.

Theorem 2.5. (Prieß-Crampe and Ribenboim)[50,
(3.1)] Let (X, d) be a spherically complete generalized
ultra-metric space. Let f : X → 2X be a non-empty
contraction which is strictly contracting on orbits, and
assume that for every x ∈ X the set minΠx is finite and
that every element of Πx has a lower bound in minΠx.
Then f has a fixed point.

This result has several corollaries, both for multival-
ued mappings and for single-valued mappings, and we
state next those that we need in the sequel. Note that
Theorem 2.7 is a slight extension of Theorem 2.4.

Theorem 2.6. (Prieß-Crampe and Ribenboim)[50,
(3.4)] Let (X, d) be spherically complete and let Γ be
narrow, that is, such that every trivially ordered subset
of Γ is finite. Let f : X → 2X be non-empty, strictly
contracting on orbits and such that f(x) is spherically
complete for every x ∈ X. Then f has a fixed point.

Theorem 2.7. (Prieß-Crampe and Ribenboim)[53,
50] Let (X, d) be a generalized ultra-metric space which
is spherically complete, and let f : X → X be
contracting on X. Then either f has a fixed point or
there exists a ball Bπ(z) such that d(y, f(y)) = π for all
y ∈ Bπ(z). If, in addition, f is strictly contracting on
orbits, then f has a fixed point. Finally, this fixed point
is unique if f is strictly contracting on X.

As already noted, the set Γ used here in general
need not be a value semigroup. However, for the
applications we have in mind our choice of Γ will be

a value semigroup, and we consider this point next.
Let γ > 1 denote an arbitrary countable ordinal, and

denote by Γγ the set {2−α | α ≤ γ} of symbols 2−α.
Then Γγ is totally ordered by 2−α < 2−β if and only
if β < α, and indeed 2−γ is the bottom element of
Γγ . (Notice that Γγ is really nothing other than γ + 1
endowed with the dual of the usual ordering, but it
is convenient to use the symbols 2−α rather than the
symbols α to denote typical elements, as will be seen
later. Notice also that we regard an ordinal γ as the
set of all ordinals n such that n ∈ γ, that is, the set
of ordinals n such that n < γ.) We define the binary
operation + on Γγ by

2−α + 2−β = max{2−α, 2−β},

and take 2−γ as the identity and 2−0 as the absorbing
element, noting that 2−γ 6= 2−0 by our mild assumption
that γ > 1, where 0 denotes the finite limit ordinal zero.
Notice that we will sometimes also use 0 to denote 2−γ

where this does not cause confusion. Then Γγ is a value
semigroup in which a

2 = a, where a = 2−α denotes a
typical element of Γγ , and moreover the partial order
induced on Γγ by + coincides with that already defined.
Furthermore, the set {2−α | α < γ} is a set of positives
in Γγ .

Using this construction we can turn a domain (D,v)
into a generalized ultra-metric space essentially using
the construction of Example 4, as follows.

Definition 2.15. Let r : DC → γ be a function,
again called a rank function, form the set Γγ , and
suppose that r satisfies the condition6 that for all β < γ
there exist β′ ≥ β and c ∈ DC such that r(c) = β′.
Define dr : D ×D → Γγ by

dr(x, y) = inf{2−α | c v x if and only if c v y

for all c ∈ DC with r(c) < α}.

The following result was established in [54, Theorem
4.7].

Theorem 2.8. The space (D, dr) is a spherically
complete generalized ultra-metric.

Indeed, (D, dr) is called the generalized ultra-metric
space induced by r. The intuition behind dr is that two
elements x and y of the domain D are “close” if they
dominate the same compact elements up to a certain
rank (and hence agree in this sense up to this rank);
the higher the rank giving agreement, the closer are x
and y.

2.2.3. Partial Metrics and d-Metrics
It is perhaps surprising that distance functions which
fail to satisfy axiom (d1) should prove to be of any
interest. Nevertheless, there are several instances in

6Mild conditions such as this prevent pathology arising by
excluding the possibility that r is constantly zero, see also
Example 4.
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computer science where distance functions satisfying
d(x, x) 6= 0 arise, and we will examine two of them
here. These discussions suggest that distance functions
satisfying the axiom d(x, x) 6= 0 may have other
interesting applications within computer science.

The first case we consider is that of the (weak)
partial metrics defined next. These were introduced by
Matthews in [55, 56] in connection with the semantics
of data flow networks as studied by Kahn in [57].

Definition 2.16. Let X be a set and let d : X×X →
[0,∞] be a function. We call d a partial metric on
X if it satisfies the following axioms, where x, y, z are
arbitrary elements of X.

(p1) x = y if and only if d(x, x) = d(x, y) = d(y, y).
(p2) d(x, x) ≤ d(x, y).
(p3) d(x, y) = d(y, x).
(p4) d(x, z) ≤ d(x, y) + d(y, z)− d(y, y).

A weak partial metric is a function d satisfying
conditions (p1), (p3) and (p4), but not necessarily the
condition (p2) of small self-distances.

Partial metrics and weak partial metrics were also
studied in [47, 58, 59]; in fact, in [59] partial metrics
are allowed to take negative distances. A (weak)
partial metric d need not satisfy axiom (d1), and so
d(x, x) need not be zero. Indeed, the value of d(x, x)
has been called the size of x by Matthews [56], and
used to express the extent to which x is partially
defined: x is totally defined if d(x, x) = 0. Thus, a
(weak) partial metric is not a continuity function in
the sense employed in Definition 2.4. Nevertheless,
the set of balls it determines yields a topology,
and thus (weak) partial metrics fall into our general
framework in which distance functions correspond to
topologies. Furthermore, strong relationships between
the topologies arising from partial metrics and the
topologies usually discussed in domain theory can be
established, see for example [60, 56, 47].

Another example of the occurrence of distance
functions failing to satisfy axiom (d1) is provided by
d-metrics which we consider next. These were studied
in [55], where they are called metric domains, and also
in [23], where they are used in the context of logic
programming semantics and will be discussed further
here in that same context in Part II.

Definition 2.17. Let d : X × X → [0,∞] be a
function. We call d a d-metric on X if it satisfies
axioms (d2), (d3) and (d4), and call d a d-ultra-metric
if it satisfies axioms (d3), (d4) and (d5).

It is clear that any (weak) partial metric is a d-metric.
Furthermore, it is routine to extend the usual notions
of limit of a sequence (called d-limits), Cauchy sequence
and completeness to d-metric spaces. Once that is
done, one then obtains the following generalization of
the Banach contraction mapping theorem to d-metric
spaces, due to Matthews [55], see also [23].

Theorem 2.9. Let (X, d) be a complete d-metric
space and let f : X → X be a contraction. Then f
has a unique fixed point x0 which can be obtained as the
d-limit of the sequence (fn(x))n∈N for any x ∈ X.

Again, d-metrics are not continuity functions, since
in general they fail to satisfy axiom (d1). Furthermore,
whilst it is true, as already noted, that the set of
balls determined by a (weak) partial metric yields a
topology in the conventional sense, this is not the
case for d-metrics. However, given a d-metric d, one
can associate with d a metric d′ defined by setting
d′(x, y) = d(x, y) for x 6= y and setting d′(x, x) = 0
for all x ∈ X. Then d′ is complete if and only if d
is complete, and a function f which is a contraction
relative to d is a contraction relative to d′, see [23,
Propositions 26 and 27]. Indeed, the notions of d-
topological space and d-neighbourhood system of a point
x in a d-metric space have been examined in [61] and
shown to have very similar properties to conventional
topologies respectively neighbourhood systems; for
example, the property of conventional neighbourhoods
quoted immediately following the definition of a
topology, Definition 2.1, is essentially valid. In
effect, therefore, d-metrics also fall within our general
framework in which distance functions correspond to
systems of neighbourhoods with natural properties.
Further, purely topological results of this nature have
been established in [62] under the name of relational
topology, a concept which includes d-topological spaces.

One can also extend the definition of a generalized
ultra-metric to obtain the definition of a d-generalized
ultra-metric, or simply a d-gum, by dropping the axiom
(gum1), but retaining axioms (gum2), (gum3) and
(gum4) in Definition 2.12. The concepts defined for
generalized ultra-metric spaces then easily extend to d-
gums, noting that γ-balls may be empty in the case
of d-gums and hence in defining spherical completeness
one needs to stipulate that the chain C consists of non-
empty balls. Furthermore, the definitions made for
mappings between gums also extend to d-gums.

The following lemma, proved in [23], is well-known
for ordinary ultra-metric spaces, see [52]. We include
its short proof for the sake of completeness.

Lemma 2.1. Let (X, d, Γ) be a d-gum. For α, β ∈ Γ
and x, y ∈ X, the following statements hold.

(1) If α ≤ β and Bα(x)∩Bβ(y) 6= ∅, then Bα(x) ⊆
Bβ(y).
(2) If Bα(x) ∩Bα(y) 6= ∅, then Bα(x) = Bα(y).
(3) Bd(x,y)(x) = Bd(x,y)(y).

Proof. Let a ∈ Bα(x) and b ∈ Bα(x) ∩ Bβ(y). Then
d(a, x) ≤ α and d(b, x) ≤ α, hence d(a, b) ≤ α ≤ β.
Since d(b, y) ≤ β, we have d(a, y) ≤ β, and hence
a ∈ Bβ(y), which proves the first statement. The
second statement follows from (1) by symmetry. For the
third statement, we note that d(x, y) ≤ d(x, y) = d(y, x)
and it follows from (gum4) that d(x, x) ≤ d(x, y) for all
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x, y ∈ X. Hence, x ∈ Bd(x,x)(x) ⊆ Bd(x,y)(x) and also
x ∈ Bd(x,y)(y), and therefore Bd(x,y)(x) ∩ Bd(x,y)(y) 6=
∅. Statement (3) now follows from (2) on taking α to
be equal to d(x, y) in (2).

The following theorem unites Theorem 2.9 of
Matthews [55] and Theorem 2.4 of Prieß-Crampe and
Ribenboim [52]. The proof of the latter theorem given
in [52] in fact carries over directly to our more general
setting of d-gums, and we include it to illustrate the
methods used.

Theorem 2.10. Let (X, d, Γ) be a spherically com-
plete d-gum and let f : X → X be contracting on X
and strictly contracting on orbits. Then f has a fixed
point. If f is strictly contracting on X, then the fixed
point is unique.

Proof. Assume that f has no fixed point. Then for
all x ∈ X, d(x, f(x)) 6= 0. We define the set B by
B = {Bd(x,f(x))(x) | x ∈ X}, and note that each ball
in this set is non-empty. By Lemma 2.1 (3), we know
that Bd(x,f(x))(x) = Bd(x,f(x))(f(x)). Now let C be a
maximal chain in B. Since X is spherically complete,
there exists z ∈

⋂
C. We show that Bd(z,f(z))(z) ⊆

Bd(x,f(x))(x) for all Bd(x,f(x))(x) ∈ C and hence, by
maximality, that Bd(z,f(z))(z) is the smallest ball in the
chain. Let Bd(x,f(x))(x) ∈ C. Since z ∈ Bd(x,f(x))(x),
and noting our earlier observation that Bd(x,f(x))(x) =
Bd(x,f(x))(f(x)) for all x, we obtain d(z, x) ≤ d(x, f(x))
and d(z, f(x)) ≤ d(x, f(x)). Since f is contracting, we
get d(f(z), f(x)) ≤ d(z, x) ≤ d(x, f(x)). It follows by
(gum4) that d(z, f(z)) ≤ d(x, f(x)) and therefore that
Bd(z,f(z))(z) ⊆ Bd(x,f(x))(x) for all Bd(x,f(x))(x) ∈ C
by Lemma 2.1 (1). Now, since f is strictly contracting
on orbits, d(f(z), f2(z)) < d(z, f(z)), and therefore
z 6∈ Bd(f(z),f2(z))(f(z)) ⊂ Bd(z,f(z))(f(z)). By Lemma
2.1 (2), this is equivalent to Bd(f(z),f2(z))(f(z)) ⊂
Bd(z,f(z))(z), which is a contradiction to the maximality
of C. Thus, f has a fixed point.

Now let f be strictly contracting on X and assume
that x, y are two distinct fixed points of f . Then we get
d(x, y) = d(f(x), f(y)) < d(x, y) which is impossible.
So, the fixed point of f is unique in this case.

Note 2.1. We note here that uniqueness of fixed
points, as in the theorem just given and earlier ones,
is not usually something which can be derived from the
Knaster-Tarski theorem or from Kleene’s theorem.

2.2.4. Generalized Metrics and Quasi-Metrics in the
Context of Multivalued Mappings

In [29], Khamsi, Kreinovich and Misane introduced
a notion of generalized metric in order to study the
stable model semantics of locally stratified programs,
see Section 6. The notion of generalized metric defined
in [29] is closely related to that of generalized ultra-
metric introduced in Section 2.2.2, at least in the case

which concerns us here, and we discuss this connection
in this section.

By an ordered semigroup V with identity 0, we mean
a semigroup V with identity 0 on which there is defined
an ordering ≤ satisfying: 0 ≤ v for all v ∈ V , and if
v1 ≤ v2 and v′1 ≤ v′2, then v1 + v′1 ≤ v2 + v′2.

Definition 2.18. Let V be an ordered abelian
semigroup with identity 0 and let X be an arbitrary set.
A generalized metric on X is a mapping d : X×X → V
which satisfies the usual metric axioms (d1) to (d4),
that is, d satisfies the following axioms for all x, y, z ∈
X.
(i) d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).
(iii) d(x, z) ≤ d(x, y) + d(y, z).
The pair (X, d) consisting of a set X and a generalized
metric d on X is called a generalized metric space
relative to V .

Definition 2.19. Let V be an ordered abelian
semigroup with identity 0. Assume that α ≥ 1 is either
a countable ordinal or ω1, the first uncountable ordinal,
and that v = (vβ)β<α is a decreasing family of elements
of V . Finally, let X be a generalized metric space
relative to V , and let (xβ)β<α be a family of elements
of X. Then:
(i) (xβ) is said to v-cluster to x ∈ X if, for all β, we
have d(xβ , x) < vβ whenever β < α,
(ii) (xβ) is said to be v-Cauchy if, for all β and δ, we
have d(xβ , xδ) < vβ whenever β < δ < α,
(iii) X is said to be complete if, for every v, every v-
Cauchy family v-clusters to some element of X,
(iv) a set Y ⊆ X will be called complete if, for every
v, whenever a v-Cauchy family consists of elements of
Y , it v-clusters to some element of Y .

Remark 1. As in Section 2.2.2, let γ > 1 be an
arbitrary countable ordinal, form the set Γγ with the
ordering defined in Section 2.2.2, and denote 2−γ by 0.
Taking V as Γγ and the binary operation + as before,
that is, u+v = max{u, v}, we obtain an ordered abelian
semigroup V with identity 0. It will be convenient to
write 1

22−α for 2−(α+1), but note that 1
22−α is not then

being used with its meaning in Section 2.2.2. However,
with a slight change of notation (which we will not
trouble to make and will not cause confusion in so
doing), on taking V as Γγ , a generalized metric is then
a continuity function as in Definition 2.4.

Note 2.2. For the rest of this section, V will be taken
to be Γγ as in Remark 1.

A mapping T : X → 2X is called a multivalued 1
2 -

contraction if, for every x ∈ X, for every y ∈ X and
for every a ∈ T (x), there exists b ∈ T (y) such that
d(a, b) ≤ 1

2d(x, y).
The following theorem was established in [29].

Theorem 2.11. Let X be a complete generalized
metric space, let T be a multivalued 1

2 -contraction on
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X such that T (x) is not empty for some x ∈ X, and
suppose that for every x ∈ X the set T (x) is complete.
Then T has a fixed point.

Let (X, d) be a generalized metric space in the
sense of Definition 2.18 with respect to V as given in
Remark 1. Then it is easy to see that d is in fact a
generalized ultra-metric in the sense of Section 2.2.2.
However, to avoid confusion arising from overuse of the
term “generalized ultra-metric”, we will refrain from
employing this term to mean a generalized metric in
the sense of Definition 2.18 which happens to satisfy
axiom (gum4).

The next two results were established in [54].

Proposition 2.1. Let X be a complete generalized
metric space with respect to V , where V is as defined in
Remark 1. Then X is spherically complete in the sense
of Section 2.2.2.

Proposition 2.2. Let (X, d, V ) be a spherically
complete generalized ultra-metric space in the sense of
Section 2.2.2, where V is as defined in Remark 1. Then
X is complete in the sense of the present section.

This means, by virtue of Theorem 2.5, that we
can reformulate the assumptions in Theorem 2.11 and
thereby obtain the following theorem, Theorem 2.12. In
fact, our conclusion relative to the second statement in
Theorem 2.12 is a special case of Theorem 2.6.

Theorem 2.12. Let X be a spherically complete
generalized ultra-metric space (with respect to V ) and
let f be multivalued, non-empty and strictly contracting
on X. Then either of the following conditions ensures
the existence of a fixed point of f .

(i) The set {d(x, y) | y ∈ f(x)} has a minimum in
X for all x ∈ X.
(ii) The set f(x) is spherically complete for each
x ∈ X.

Finally, to close this section and the first part
of the paper, we mention a result involving quasi-
metrics in the context of multivalued mappings, as
follows. In addition to the results of Khamsi,
Kreinovich and Misane already discussed above, these
authors also established in [29] a version of the
Banach contraction mapping theorem for multivalued
mappings. In [30] a version of Kleene’s theorem
and a version of Theorem 2.2 were established for
multivalued mappings. The latter result achieved,
using quasi-metrics, a unification for multivalued
mappings of Kleene’s theorem, as given in [30], and
the Banach contraction mapping theorem of Khamsi
et al. comparable with that obtained by Rutten, Smyth
and others for single-valued mappings. The reader is
referred to [30] for full details.

Part II

Some Applications of
Generalized Distance
Functions
We are now in a position to discuss the role of
some of the theorems we have just described in
the context of the theory of computation and in
logic programming semantics in particular, and we
proceed to do this next. We begin by presenting the
minimum background needed in logic programming,
concentrating on semantics and largely ignoring
implementation and procedural matters. Our general
reference for this subject is [17]; we refer to [63] for an
account of the growth of logic programming and of its
role as a major tool in various parts of computer science,
such as database systems, artificial intelligence, natural
language processing, machine learning and building
expert systems etc.

3. LOGIC PROGRAMS

A logic programming system comprises four main
facets: (i) the syntax or expressiveness of the system
and its computational adequacy (relative, say, to
SLDNF-resolution7); (ii) the procedural semantics of
the system or what is output by the interpreter; (iii) the
declarative semantics or logical meaning of the output;
(iv) the fixed-point semantics. These four issues are
highly interconnected, and it is important that the
three semantics just mentioned should coincide in some
sense, see Theorem 3.1 for example. In fact, what
is usually meant by the term declarative semantics is
some natural model canonically associated with each
program permitted by the syntax, and realized as the
(least, minimal, unique etc.) fixed point of an operator
determined by the program. The existence of such
models is an advantage possessed by logic programs over
conventional imperative or object-oriented programs
in giving logic programs a clear, machine-independent
meaning. Unfortunately, most systems with enhanced
syntax permit many canonical models, and it is by no
means obvious in general which of them best captures
the intended meaning of the programmer, depending
on his or her view of non-monotonic reasoning. Indeed,
the study of these standard models, such as the well-
founded model (van Gelder et al. [64]), the stable
model (Gelfond and Lifschitz [65]) or the perfect model

7For example, the class of definite logic programs is
computationally adequate relative to SLD-resolution, that is, it
can compute all partial recursive functions. We note further
that SLD-resolution is a standard implementation of logic
programming and means Linear resolution with Selection function
for Definite clauses. Similarly, SLDNF-resolution stands for SLD-
resolution augmented with the Negation as Failure rule. We refer
the reader to [17] for full details of these matters.
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and the weakly perfect model (Przymusinski [19]),
and of the corresponding operators, accounts for a
high proportion of the research undertaken on the
foundations of the subject. It should be noted that
the canonical models just mentioned are in general
different, and it is interesting to know when they are
equal, for this provides conditions under which we have
coincidence of the various ways of considering non-
monotonic reasoning; we take up this point in Section 4.

3.1. Syntax of Normal Logic Programs

Given a first-order language L, a normal logic program
P (with underlying language L) is a finite set of clauses
of the form

∀(A← B1 ∧ · · · ∧Bk ∧ ¬Bk+1 ∧ · · · ∧ ¬Bn),

usually written as

A← B1, . . . , Bk,¬Bk+1, . . . ,¬Bn

or as
A← L1, . . . , Ln

or more simply as

A← body,

where body denotes the conjunction L1∧· · ·∧Ln, usually
written as L1, . . . , Ln. Here, A and all the Bi are atoms
in L, each Li is a literal in L (an atom Bi or a negated
atom ¬Bi), ← denotes implication, and the universal
quantifier is understood. The atom A is called the head
of the clause, and each Li is called a body literal of the
clause. By an abuse of notation, we allow n to be zero
or, in other words, we allow the body to be empty, in
which case we are dealing with the unit clause, or fact,
A← . A program P is called positive or definite if no
clause contains a negated atom.

Example 5. The following program (taken from
[38]) computes the transitive closure of a graph.

r(X, Y,E, V ) ← m([X, Y ], E)
r(X, Z, E, V ) ← m([X, Y ], E),¬m(Y, V ),

r(Y, Z, E, [Y |V ])
m(X, [X|T ]) ←
m(X, [Y |T ]) ← m(X, T )

e(a) ← for all a ∈ N

Here, N denotes a finite set containing the nodes
appearing in the graph as elements. In the program,
uppercase letters denote variable symbols, lowercase
letters constant symbols, and lists are written using
square brackets as usual under Prolog. One evaluates a
goal (the negation of the object one wishes to compute)
such as ← r(x, y, e, [x]), where x and y are nodes and e
is a graph specified by a list of pairs denoting its edges.
The goal is supposed to succeed (or the interpreter

outputs “yes”) when x and y can be connected by a path
in the graph. The predicate m implements membership
of a list. The last argument of the predicate r acts as
an accumulator which collects the list of nodes which
have already been visited in an attempt to reach y from
x.

3.2. Semantics of Normal Logic Programs

The usual approach to the declarative semantics of logic
programs P is via Tarski’s notions of interpretation and
model, which are standard apparatus in mathematical
logic. However, since we are at all times dealing
with sets of clauses, Herbrand interpretations will
suffice for our purposes, see [17, Chapter 1]. Thus,
given a logic program P with underlying language L,
we form the Herbrand base BP of P as defined in
Example 3. Then a two-valued interpretation or simply
an interpretation for P is a mapping from BP to the
classical, or two-valued, truth set {true, false}. Such an
interpretation gives a truth value to each ground atom
in L and extends, in the usual way, to give truth value
to any closed well-formed formula, including clauses.
Moreover, each interpretation can be identified with the
subset of BP on which it takes the value true. Thus, the
set IP of all interpretations will be naturally identified
with the power set of BP ; it therefore carries the
structure of a complete lattice (and a domain) under the
order of set inclusion. In particular, a model for P is an
interpretation I for P such that all clauses in P evaluate
to true in I. Of course, as already noted, models are
of particular importance in studying the semantics of
P . Since clauses are universally quantified, checking
their truth relative to an interpretation amounts to
checking the truth of all their ground instances in
that interpretation. We denote the set of all ground
instances of clauses in P by ground(P ), and it is often
this set that one works with, rather than with P , when
discussing questions of a theoretical nature.

A partial interpretation or three-valued interpre-
tation I is a mapping from BP to the truth set
{true (t), false (f), undefined (u)} and can be identified
with a pair (I+, I−) of disjoint subsets of BP . Given a
partial interpretation I = (I+, I−), atoms in I+ carry
the truth value true in I and atoms in I− the value false
in I. Atoms which are neither in I+ nor in I− carry the
truth value undefined. Partial interpretations are inter-
preted in one of the standard three-valued logics such as
Kleene’s strong three-valued logic which tells one how
the undefined value, u, relates to the other truth val-
ues under conjunction, disjunction and negation, see
[66, 21, 22]. Once this is done, a truth value can again
be given to any ground formula in L. A partial interpre-
tation (I+, I−) is called total if I+∪I− = BP , and such
an interpretation can be naturally identified with an el-
ement of IP . The set IP,3 of all partial interpretations
is a complete partial order, indeed complete semilattice,
and a domain under the ordering: (I+

1 , I−1 ) ≤ (I+
2 , I−2 )
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if and only if I+
1 ⊆ I+

2 and I−1 ⊆ I−2 , where we take the
bottom element to be ⊥ = (∅, ∅). Total interpretations
are in fact maximal elements in the ordering just given.

3.3. Some Operators Determined by Logic
Programs

There are various operators associated with a logic pro-
gram P . They map interpretations to interpretations,
and their importance lies in the fact that the various
canonical models for P can be realized as fixed points
of one or other of them. We discuss two of these opera-
tors now and others later on. The first, and perhaps the
most important, is the immediate consequence operator
or single-step operator TP : IP → IP due to Kowal-
ski and van Emden, see [67, 68, 17], defined as follows:
TP (I) is the set of all A ∈ BP such that there is a ground
instance A ← L1, . . . , Ln of a clause in P with head A
satisfying I |= L1 ∧ · · · ∧ Ln, where I |= L1 ∧ · · · ∧ Ln

means that L1 ∧ · · · ∧ Ln is true in I.
The operator TP has many important and pleasing

properties, and we summarize some of these next.
First, if P is definite, then TP is continuous on IP .
Therefore, it has a least fixed point lfp(TP ) given by
Kleene’s theorem. Moreover, one has the following
theorem due to Apt, Kowalski and van Emden, see
[67, 68] which, amongst other things, gives a form of
the Gödel completeness theorem relating soundness and
completeness for definite logic programming systems,
see also [17].

Theorem 3.1. For any definite logic program P , we
have lfp(TP ) = TP ↑ ω = {A ∈ BP | P ` A} = {A ∈
BP | P |= A} = MP .

Thus, provability (`) from P of a ground atom
A relative to SLD-resolution coincides with it being
a logical consequence (|=) of P , and both coincide
with truth relative to the least Herbrand model MP ,
which is the intersection of all Herbrand models for P .
Moreover, because of continuity, the iterates Tn

P of TP

close off at ω, which gives us the means, in principle,
of finding MP . For these reasons, MP is, for definite
programs P , usually taken to be the standard model
for P or, in other words, the programmer’s intended
meaning for P , as mentioned earlier.

Next, for any normal logic program, whether definite
or not, TP has the property that an interpretation I is a
(two-valued) model for P precisely when TP (I) ⊆ I or,
in other words, precisely when I is a pre-fixed point of
TP . The fixed points of TP are of particular importance
since they are the supported models or models for the
Clark completion of P , see [69, 17]. It is argued in [18]
that they are the appropriate models to consider, since
an atom A belongs to such a model M if and only if
there is a clause A ← body in ground(P ) with body
true in M , and hence the program itself supports the
belief that A is true in M . Thus, the supported model
semantics or Clark completion semantics is important,

and it can be argued that it is “the” standard model
for P or the model best able to capture the intended
meaning of P .

Therefore, it can be further argued that the fixed
points of TP are fundamental in studying the semantics
of logic programming systems. Yet a major problem
arises: if P is not definite, then TP is not monotonic
as can easily be seen by considering the program with
the two clauses p(0) ← and p(s(x)) ← ¬p(x), which
computes the even natural numbers. Therefore, the
Knaster-Tarski theorem is not in general applicable as
a means of finding fixed points, and this is the primary
reason for our interest in alternative methods, such
as those based on generalized distance functions, for
finding fixed points of (non-monotonic) operators.

The second operator we consider is due to Fitting
[66] and is the three-valued operator ΦP defined as a
mapping on partial interpretations K = (K+,K−) as
follows. We set ΦP (K) = (I+, I−), where I+ is the
set of all A ∈ BP with the property that there exists a
clause A ← body in ground(P ) such that body is true
in K, and I− is the set of all A ∈ BP such that for all
clauses A ← body in ground(P ) we have that body is
false in K; truth and falsehood being taken here relative
to a three-valued logic as mentioned earlier.

We note that ΦP is always monotonic, but not
necessarily continuous. Thus, the Knaster-Tarski
theorem applies and shows the existence of a least fixed
point of ΦP , although we may really have to iterate into
the transfinite to reach it in the absence of continuity.
It was shown in [66], and in [38, 21, 22] for acceptable
programs, how fixed points of ΦP relate to those of TP .
We see later in Section 5 that the fixed-point theorems
of [52, 50] can sometimes be applied to show uniqueness
of the fixed points of ΦP , which, incidentally, cannot
be shown by means of the Knaster-Tarski theorem, as
already noted.

4. ACCEPTABLE AND Φ∗-ACCESSIBLE
PROGRAMS

The use of ultra-metrics in algebra and in logic is
well-established, see, for example, [70, 71] for such
applications within valuation theory and algebraic
geometry. In the opposite direction, see [72] for some
interesting decidability and model-theoretic results
relating to ultra-metrics arising in the context of (i)
fields with valuations, and (ii) sets Aλ of mappings
from ordinals λ to sets A. However, metric and ultra-
metric methods were introduced to logic programming
by Fitting in [27] in analyzing the semantics of
the acceptable programs of Apt and Pedreschi [38]
(these programs are important in termination analysis).
Therefore, the fixed-point theorem employed in [27]
is the Banach contraction mapping theorem. This is
rather restrictive in so much as it is often useful to
make transfinite constructions and definitions, although
these may well be shown later to close off at ω as this is
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important for computability purposes. In [22, 61], the
present authors, inspired by the properties of acceptable
programs, defined certain classes of programs, called Φ-
accessible and Φ∗-accessible programs, which have the
property that each program in the class has a unique
supported model, and showed that it follows from this
property that all the different semantics mentioned
in Section 3 in fact coincide. These latter classes
of programs were defined in terms of various three-
valued logics and include the acceptable programs and
certain other important classes, and are also known
to be computationally adequate; they therefore are
interesting in providing a semantically unambiguous
setting with enhanced syntax and full computational
power.

The proof of the existence and uniqueness of the
supported models we gave in [22] for the Φ-accessible
and Φ∗-accessible programs was by means of three-
valued logics. In this section, we give an alternative
proof based on Theorem 2.10 thereby illustrating the
use of d-gums in logic programming semantics.

The following definition is taken from [38], where it
was employed in defining acceptable programs; we will
use it here as the basis of the more general Φ∗-accessible
programs.

Definition 4.1. Let P be a logic program, and let p
and q be predicate symbols occurring in P .

1. p refers to q if there is a clause in P with p in its
head and q in its body.
2. p depends on q if (p, q) is in the reflexive,
transitive closure of the relation refers to.
3. NegP denotes the set of predicate symbols in P
which occur in a negative literal in the body of a
clause in P .
4. Neg∗P denotes the set of all predicate symbols in
P on which the predicate symbols in NegP depend.
5. P− denotes the set of clauses in P whose head
contains a predicate symbol from Neg∗P .

By the term level mapping for P , we mean a function
l : BP → γ, where γ is an arbitrary (countable) ordinal
> 1; given a level mapping l, we always assume that l
has been extended to all literals by setting l(¬A) = l(A)
for each A ∈ BP . If l(A) = n, we say that the level of
A is n or that A has level n. Level mappings have
been used in logic programming in a variety of contexts
including problems concerned with termination, and
with completeness, and also to define (generalized)
metrics, see [38, 27, 31, 45]. We will see in Section 5 how
they can be used to define generalized ultra-metrics in
the sense of Definition 2.12. However, one of their main
uses is in providing syntactic conditions on programs
under which a satisfactory standard model can be
obtained, and an instance of this usage is given in the
next definition.

Definition 4.2. A program P is called Φ∗-accessible
if and only if there exists a level mapping l for P

and a model I for P which is a supported model for
P−, such that the following condition holds. For each
clause A ← L1, . . . , Ln in ground(P ), we either have
I |= L1 ∧ · · · ∧ Ln and l(A) > l(Li) for all i = 1, . . . , n
or there exists i ∈ {1, . . . , n} such that I 6|= Li and
l(A) > l(Li).

The Φ∗-accessible programs are a common general-
ization of acyclic, locally hierarchical, and acceptable
programs, see [73, 38]. As already noted, the present
authors gave a unified treatment in [22] of these classes
of programs by means of operators in various three-
valued logics.

For the remainder of this section, let P denote
a Φ∗-accessible program which satisfies the defining
conditions with respect to a model I and a level
mapping l : BP → γ. As in Section 2, we let Γγ denote
the set {2−α | α ≤ γ} ordered by 2−α < 2−β if and only
if β < α, and here denote 2−γ by 0.

For J,K ∈ IP , we now define d(K, K) = 0, and
d(J,K) = 2−α, where J and K differ on some atom
A ∈ BP of level α, but agree on all ground atoms
of lower level. It was shown in [25] that (IP , d) is
a spherically complete generalized ultra-metric space.
For K ∈ IP , we denote by K ′ the set K restricted
to the predicate symbols in Neg∗P . By analogy with
[27], we now define for all J,K ∈ IP : d1(J,K) =
d(J ′,K ′) and d2(J,K) = d(J \ J ′,K \ K ′). Next,
we define the function f : IP → Γ by f(K) = 0
if K \ K ′ ⊆ I and otherwise f(K) = 2−α, where
α is the smallest ordinal such that there is an atom
A ∈ K \K ′ with l(A) = α and A 6∈ I. Finally, we define
%(J,K) = max{d1(J, I), d1(K, I), d2(J,K), f(J), f(K)}
for all J,K ∈ IP .

Proposition 4.1. The space (IP , %) is a spherically
complete d-ultra-metric.

Proof. That (IP , %) is a d-ultra-metric space we leave
to the reader. For spherical completeness, let (Bα) be a
(decreasing) chain of balls in IP with centres Iα. Let K
be the set of all atoms which are eventually in Iα, that
is, the set of all A ∈ BP such that there exists some
ordinal β with A ∈ Iα for all α ≥ β. We show that for
each ball B2−α(Iα) in the chain we have d(Iα, I) ≤ 2−α,
which suffices to show that K is in the intersection of
the chain. Indeed, it is easy to see by the definition of
% that all Iβ with β > α agree on all atoms of level
less than α. Hence, by definition of K we obtain that
K and Iα agree on all atoms of level less than α, as
required.

The next proposition is analogous to [27, Proposition
7.1].

Proposition 4.2. Let P be Φ∗-accessible with
respect to a level mapping l and a model I. Then for
all J,K ∈ IP with J 6= K we have %(TP (J), TP (K)) <
%(J,K). In particular, the following results hold.

(i) d1(TP (J), I) < d1(J, I), whenever d1(J, I) 6= 0,
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and d1(TP (J), I) = 0 whenever d1(J, I) = 0.
(ii) f(TP (J)), f(TP (K)) < %(J,K).
(iii) d2(TP (J), TP (K)) < %(J,K).

Proof. It suffices to prove properties (i), (ii) and (iii).
For convenience, we identify Neg∗P with the subset of
BP containing predicate symbols from Neg∗P .
(i) First note that d1(TP (J), I) = d1(TP−(J), I) since
d1 only depends on the predicate symbols in Neg∗P . Let
d(J, I) = 2−α. We show that d(TP−(J), I) ≤ 2−(α+1).
We know that J ′ and I ′ agree on all ground atoms of
level less than α and differ on an atom of level α. It
suffices to show now that TP−(J)′ and I ′ agree on all
ground atoms of level less than or equal to α.

Let A be a ground atom in Neg∗P with l(A) ≤ α
and suppose that TP−(J) and I differ on A. Assume
first that A ∈ TP−(J) and A 6∈ I. Then there must
be a ground instance A ← L1, . . . , Lm of a clause in
P− such that J |= L1 ∧ · · · ∧ Lm. Since I is a fixed
point of TP− , and using Definition 4.2, there must also
be a k such that I 6|= Lk and l(Lk) < α. Note that
the predicate symbol in Lk is contained in Neg∗P . So
we obtain I 6|= Lk, J |= Lk and l(Lk) < α which is
a contradiction to the assumption that J and I agree
on all atoms in Neg∗P of level less than α. Now assume
that A ∈ I and A 6∈ TP−(J). It follows that there is a
ground instance A← L1, . . . , Lm of a clause in P− such
that I |= L1 ∧ · · · ∧ Lm and l(A) > l(L1), . . . , l(Lm) by
Definition 4.2. But then J |= L1∧· · ·∧Lm since J and I
agree on all atoms of level less than α and consequently
A ∈ TP−(J). This contradiction establishes the first
statement in (i). The second statement in (i) follows by
a similar argument, noting that in this case J ′ = I ′.
(ii) It suffices to show this for K. Assume %(J,K) =
2−α. We show that f(TP (K)) ≤ 2−(α+1), for which in
turn we have to show that, for each A ∈ TP (K) not
in Neg∗P with l(A) ≤ α, we have A ∈ I. Assume that
A 6∈ I for such an A. Since A ∈ TP (K), there is a
ground instance A← L1, . . . , Lm of a clause in P with
K |= L1 ∧ · · ·∧Lm. Since A 6∈ I, there must also be a k
with I 6|= Lk and l(A) > l(Lk) by Definition 4.2. If the
predicate symbol of Lk belongs to Neg∗P , then, since K
and I agree on all atoms in Neg∗P of level less than α, we
obtain K 6|= Lk which contradicts K |= L1 ∧ · · · ∧ Lm.
If the predicate symbol in Lk does not belong to Neg∗P ,
then Lk is an atom and since f(K) ≤ 2−α we obtain
I |= Lk, which is again a contradiction.
(iii) Let %(J,K) = 2−α, let A be not in Neg∗P with
l(A) ≤ α and A ∈ TP (J). By symmetry, it suffices
to show that A ∈ TP (K). Since A ∈ TP (J), we must
have a ground instance A ← L1, . . . , Lm of a clause in
P with J |= L1 ∧ · · · ∧ Lm. If I |= L1 ∧ · · · ∧ Lm,
then l(Lk) < l(A) ≤ α for all k, and since J and
K agree on all atoms of level less than α we obtain
K |= L1 ∧ · · · ∧ Lm, and hence A ∈ TP (K). If there
is some Lk such that I 6|= Lk, then without loss of
generality l(Lk) < l(A) ≤ α by Definition 4.2. Now,
if the predicate symbol of Lk belongs to Neg∗P , then,

since d1(J, I) ≤ 2−α, we obtain from J |= Lk that
I |= Lk which is a contradiction. Also, if the predicate
symbol of Lk does not belong to Neg∗P , then Lk is an
atom and since f(J) ≤ 2−α, we obtain I |= Lk, again a
contradiction. This establishes (iii) and completes the
proof.

We are now in a position to prove the main result of
this section.

Theorem 4.1. Let P be a Φ∗-accessible program.
Then P has a unique supported model.

Proof. By Proposition 4.2, TP is strictly contracting
with respect to %, which in turn is a spherically complete
d-ultra-metric by Proposition 4.1. So, by Theorem 2.10,
the operator TP must have a unique fixed point, yielding
a unique supported model for P .

5. LOCALLY STRATIFIED PROGRAMS

We now turn our attention to the class of locally
stratified programs due to Przymusinski [19], beginning
with their definition.

Definition 5.1. Let P be a normal logic program,
let l : BP → γ be a level mapping and let A ←
A1, . . . , Ak1 ,¬B1, . . . ,¬Bl1 denote a typical clause in
ground(P ). Then P is called:
(1) locally stratified (with respect to l) if the
inequalities l(A) ≥ l(Ai) and l(A) > l(Bj) hold for all
i and j in each clause in ground(P ),
(2) locally hierarchical (with respect to l) if the
inequalities l(A) > l(Ai), l(Bj) hold for all i and j in
each clause in ground(P ).

Notice the use, again, of the level mapping involved
in this definition as a syntactic device. This time, the
stated conditions prevent “negation through recursion”,
that is, they prevent an atom occurring in the head of
a clause and simultaneously occurring negated in its
body. It is this fact which permits the demonstration
of the existence of a satisfactory standard model and
also the derivation of its properties.

The locally stratified programs form one of the most
important classes in logic programming and are in
fact a generalization of the stratified programs defined
by Apt, Blair and Walker in [18]. Przymusinski
gave a non-constructive, and fairly involved, argument
to show that each locally stratified program has a
unique natural, supported model, known as the perfect
model, preferable to any other model in a precise sense
defined in [19]; constructive proofs of its existence
and properties were given in [74, 25]. Of course, the
locally hierarchical programs form a strict subclass
of the locally stratified programs. Furthermore, it is
known that many programs used in practice fall into
the former class (of locally hierarchical programs), that
each program in it has a unique supported model ([74,
25]) and that this class is computationally adequate
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provided that the safe use of cuts is allowed ([26]). We
will sketch here how the fixed-point theory of these
classes of programs can be treated by means of the
theorems in Section 2.2.2, referring the reader to [54]
for full details.

In order to proceed, we next cast IP into a generalized
ultra-metric space. We do this by first viewing IP as
a domain, as in Example 3, and then forming the rank
function given by Definition 2.15. Specifically, suppose
that P is a logic program which is locally stratified
with respect to the level mapping l : BP → γ, as in
Definition 5.1. Then, as noted in Example 3, IP can
be thought of as a domain whose compact elements are
the interpretations corresponding to the finite subsets
of BP . Now form the set Γγ as in Section 2.2.2, and
define the rank function rl induced by l by setting
rl(I) = max{l(A);A ∈ I} for every finite I 6= ∅ and
take rl(∅) = 0. Denote the generalized ultra-metric
resulting from rl by dl. Then, by Theorem 2.8, we see
that (IP , dl) is a spherically complete generalized ultra-
metric space.

We now have the following result.

Theorem 5.1. Let P be a normal logic program
which is locally stratified with respect to a level mapping
l. Then P has a supported model. If, further, P is
locally hierarchical with respect to l, then P has a unique
supported model.

Proof. It was shown in [53] that TP is contracting since
P is locally stratified, and that there cannot exist a
ball Bπ(J) in (IP , dl) such that d(I, TP (I)) = π for all
I ∈ Bπ(J). Therefore, it follows from Theorem 2.7 that
TP has a fixed point and hence that P has a supported
model.

Next, if P is locally hierarchical, it was shown in
[25] that TP is strictly contracting. Therefore, by
Theorem 2.7 again, it follows that TP has a unique
fixed point and so P has a unique supported model,
as required.

In the same way, the domain IP,3 can be turned
into a generalized ultra-metric space and we obtain a
result corresponding to Theorem 5.1. In particular, we
see that for locally hierarchical programs P , both ΦP

and the related operator ΦP∗ , defined in [22], have a
unique fixed point. Programs for which ΦP∗ possesses
a unique fixed point (the Φ∗-accessible programs) have
already been observed to be interesting and important
insomuch as many of the standard models for them
coincide, and therefore, for such programs, the various
ways of viewing non-monotonic reasoning coincide. The
locally hierarchical programs have this property and
so, too, do the acceptable programs of [38]. Classes
of programs with this property have elsewhere been
called unique supported model classes by the authors,
and characterized in [21, 22] in terms of the fixed points
of ΦP∗ in various three-valued logics. Theorem 5.1,
or rather its (sketch) proof as given here, shows that

generalized ultra-metric methods and Theorem 2.7 are
powerful tools in carrying out investigations of this
type.

6. THE STABLE MODEL SEMANTICS

We finally consider briefly, from our current point
of view, the well-known and important stable model
semantics of Gelfond and Lifschitz, see [65].

When studying non-monotonic reasoning and deduc-
tive databases, it is often convenient to consider ex-
tended disjunctive logic programs and to allow two dif-
ferent kinds of negation. One of these is interpreted
as classical negation and the other is interpreted pro-
cedurally as negation as failure, see [17] for this no-
tion. We introduce the following terminology following
[65, 54, 29] closely.

Let L denote a first-order language. A literal L in
L is called ground if it contains no variable symbols.
We denote the set of all ground literals in L by Lit. A
rule r in L is a universally quantifed expression of the
following type

L1∨· · ·∨Ln ← Ln+1∧· · ·∧Lm∧notLm+1∧· · ·∧notLk,

where each Li ∈ Lit. Given such a rule r, we define
Head(r) = {L1, . . . , Ln}, Pos(r) = {Ln+1, . . . , Lm}
and Neg(r) = {Lm+1, . . . , Lk}. The keyword not may
be interpreted as negation as failure. An (extended
disjunctive) program Π is a set of (disjunctive) rules.
The term “extended” refers to the fact that two kinds
of negation are employed, and the term “disjunctive”
refers to the appearance of more than a single literal in
the heads of rules and to the disjunction between them.
A normal logic program can therefore be understood
as a special type of extended disjunctive program (in
which “¬” is replaced by “not”).

We note that a program is usually defined as a finite
set of rules as above, but the literals Li are allowed
to be non-ground. However, as with a normal logic
program, we can always replace a program by the set
of all ground instances of its rules. This will yield an
infinite set if function symbols are present, and a finite
set otherwise (in which case Π is called an extended
disjunctive database). Either way, in the sequel we
assume that all the rules in an extended program are
ground. Finally, a rule r, as above, will usually be
written in the form

L1, . . . , Ln ← Ln+1, . . . , Lm, notLm+1, . . . , notLk.

Given a set Π of ground rules as just defined,
it is possible to define a multivalued version TΠ of
the single-step operator, to define supported models
for Π, and to show that these coincide with the
fixed points of TΠ, see [22]. Thus, fixed points of
multivalued mappings and, consequently, corresponding
fixed-point theorems, enter very generally into the
discussion. We shall not, however, pursue this line
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here in complete generality. Instead, we briefly consider
another multivalued operator which encapsulates a
view of non-monotonic reasoning due to Gelfond and
Lifschitz. This leads to the well-known concept of stable
model, and we show how its existence can be derived
from Theorem 2.5.

In order to describe the stable model semantics or
answer set semantics for programs, we first consider
programs without negation, not. Thus, let Π denote a
disjunctive program in which Neg(r) is empty for each
rule r ∈ Π. A subset X of Lit, that is, X ∈ 2Lit, is said
to be closed by rules in Π if, for every rule r ∈ Π such
that Pos(r) ⊆ X, we have that Head(r) ∩X 6= ∅. The
set X ∈ 2Lit is called an answer set for Π if it is closed
by rules in Π and satisfies:

1. if X contains complementary literals, then X =
Lit, and

2. X is minimal, that is, if A ⊆ X and A is closed by
rules of Π, then A = X.

We denote the set of answer sets of Π by α(Π).
Now suppose that Π is a disjunctive program that may
contain not. For a set X ∈ 2Lit, consider the program
ΠX defined by:

1. if r ∈ Π is such that Neg(r)∩X is not empty, then
we remove r, that is, r 6∈ ΠX , and

2. if r ∈ Π is such that Neg(r) ∩ X is empty, then
the rule r′ belongs to ΠX , where r′ is defined
by Head(r′) = Head(r), Pos(r′) = Pos(r) and
Neg(r′) = ∅.

It is clear that the program ΠX does not contain not
and therefore α(ΠX) is defined. Following Gelfond and
Lifschitz [65], we define the operator GL : 2Lit → 22Lit

by GL(X) = α(ΠX). Finally, we say that X is an
answer set or a stable model for Π if X ∈ α(ΠX), that
is, if X ∈ GL(X). In other words, X is an answer set
for Π if it is a fixed point of the multivalued mapping
GL. Again, we use the notation α(Π) for the set of
answer sets of Π in the general case.

The following example will help to illustrate these
ideas.

Example 6. Take Π as follows:

p(0) ∨ q(0)←
p(a) ∨ q(0)← q(0) ∧ not p(0).

If X is any set of literals not containing p(0), then ΠX

is the program

p(0) ∨ q(0)←
p(a) ∨ q(0)← q(0),

and the answer sets of ΠX are {p(0)} and {q(0)}. Thus,
α(ΠX) = {{p(0)}, {q(0)}}. Since X = {q(0)} is a
suitable choice of X in that it does not contain p(0),
we see that X ∈ α(ΠX) and hence that {q(0)} is an
answer set for Π.

On the other hand, suppose that X is any set of
literals which does contain p(0). In this case, the
program ΠX is as follows:

p(0) ∨ q(0)← .

Again, the only answer sets of ΠX are {p(0)} and
{q(0)}. Since X = {p(0)} is a suitable choice of X in
that it does contain p(0) this time, we see that {p(0)}
is an answer set for Π, and indeed is the only one other
than {q(0)}. Thus, α(Π) = {{p(0)}, {q(0)}}.

In this example, GL(X) contains the two elements
{p(0)} and {q(0)} for any set X of literals, and hence
is multivalued. Moreover, both {p(0)} and {q(0)} are
fixed points of GL.

Definition 6.1. An extended disjunctive program Π
is called locally stratified if there exists a mapping (a
level mapping) l : Lit → γ, where γ is as usual a
countable ordinal, such that for every (ground) rule r
of Π, where r has the form

L1, . . . , Ln ← Ln+1, . . . , Lm, notLm+1, . . . , notLk,

the following inequalities hold: l(L) ≥ l(L
′
) and l(L) >

l(L
′′
), where L, L

′
and L

′′
denote, respectively, elements

of Head(r), Pos(r) and Neg(r).

This definition clearly generalizes Definition 5.1.
We close this section by showing that the existence

of a stable model for a locally stratified extended
disjunctive logic program Π follows from Proposition 2.1
and Theorem 2.12, and hence, ultimately, from
Theorem 2.5. Thus, Theorem 2.5 gives a unified
treatment of the fixed-point theory of locally stratified
programs and extended disjunctive programs.

Proceeding along the lines of Definition 2.15, first let
Litα denote the set {L ∈ Lit | l(L) = α}, where l
is the level mapping with respect to which Π is locally
stratified. We now define a generalized metric d on 2Lit

as follows: if A = B, then d(A,B) = 0; if A 6= B, then
d(A,B) = 2−α, where α is the smallest ordinal for which
A∩ Litα 6= B ∩ Litα. The resulting generalized metric
space turns out to be complete, as shown in [29]. It
is straightforward to see that the GL operator satisfies
the assumptions of Theorem 2.12. Therefore, GL has a
fixed point which is a stable model of Π, as required.

7. SOME RECENT DEVELOPMENTS AND
FURTHER WORK

In this section, we make brief comments on a number
of recent and fairly recent applications of distance
functions to the theory of computation, and give some
pointers to the literature. In the main, these have not
yet been discussed in the paper, other than to mention
them in the Introduction, and they are, we believe,
areas and applications where promising new results may
be expected. In presenting them, we more or less follow
the order in which we introduced the various distance
functions we have considered.
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First, metrics themselves have many more applica-
tions in semantics than we have specifically mentioned
earlier; see the book [13] (or [75] for a summary) for
applications to transition systems, and [76] for applica-
tions to Scott’s information systems, for example. In
a rather different direction, we refer to our own recent
and ongoing work in relation to the integration of logic-
based systems and neural networks, in which metrics
play a vital role, see [77, 78, 79] for example. Further-
more, the ideas concerning level mappings and gener-
alized ultra-metrics discussed here have been taken up
in [80, 81] in further developing logic programming se-
mantics itself.

As far as ultra-metrics are concerned, the references
[6, 7, 8] (and the references within these works)
contain a comprehensive account of a mathematical
model of cognitive processes in which a key idea is
that of the p-adic hierarchical treelike space. The
development employs ultra-metrics significantly in,
for example, constructing information models over
various treelike structures corresponding to ultra-metric
topologies. Similar ideas, namely, that there are natural
treelike structures defined by ultra-metric topologies are
employed in the papers [9, 10]. One of the problems
considered in the papers just cited is to characterize
how well time series data can be embedded in an ultra-
metric topology, and this has applications in a number
of areas including unique fingerprinting of a time series.
Finally, we mention some applications of ultra-metrics
in bioinformatics in the papers [11, 12]. In particular,
in [11], basic properties of p-adic numbers are used in
a new approach to describing the main aspects of DNA
sequences and the genetic code. A central role in this
is played by an ultra-metric p-adic information space
whose basic elements are nucleotides, codons and genes.
It is shown that genetic code degeneracy is related to the
p-adic distance between codons. It is clear that these
all represent especially interesting application areas
for ultra-metric methods in information processing in
which yet more, important results may be expected.

Turning to quasi-metrics, we mention a number of
applications, as follows. (i) First, in [82], complexity
spaces were introduced in order to study complexity
analysis of programs. These spaces are quasi-metric
spaces and have been extensively examined in [83, 82]
and later papers; in particular, in [83] it is shown that
O’Neill’s conjecture [59] on the relationship between
norms and valuations holds in the context of the
theory of semivaluation spaces. It turns out also
that the weightable quasi-metrics (or partial metrics)
are important in this context, and this fact relates
complexity analysis and denotational semantics nicely.
(ii) Second, in [84], quasi-metrics are used to define
abstract interpretations of programs in static analysis
in the sense of Cousot and Cousot. The value
d(x, y) encodes not only the fact of approximation
between x and y, but also the error introduced by the
approximation. For this reason, d is a quasi-metric, but

not a metric: if x approximates y, it does not follow
that y approximates x. In this framework, Theorem 2.2
is used in place of the Knaster-Tarski theorem. (iii)
Third, in [85], the authors consider the problem
of estimating the probability of accessing objects in
replicated databases in order to minimize overload (and
problems related to conflicts and consistency in the
databases) in accessing a given object x in the database.
This is done by introducing a simple “probability of
access” v(x) intended to estimate the probability that
object x will be accessed in a time interval [0, T ]. It
is shown, empirically, that v(x) is a good estimator
and also that an appropriate mathematical framework
for the theory is that of a quasi-metric lattice. The
latter has the structure of both a quasi-metric and a
lattice satisfying the properties: d(x∨z, y∨z) ≤ d(x, y),
and d(x ∧ z, y ∧ z) ≤ d(x, y) for all x, y, z, where
∨ and ∧ denote the lattice operations. (iv) Fourth,
another application of “quasi-metrics” to programming
languages is given in [86], but note that the use of
the term quasi-metric in [86] is stronger than ours
(axioms (d1), (d2) and (d4) of Section 2.1 are assumed
in [86]). Here, the authors consider the space of all finite
and infinite words over an alphabet. They consider
metrics and (balanced)8 quasi-metrics d, in their sense,
defined on this space and closely related to the well-
known Baire metric, see [16]. They establish a fixed-
point theorem for mappings f on X, which satisfy a
contraction property on some orbit9, and apply it to
discuss the average-case analysis of probabilistic divide
and conquer algorithms.

As already noted, the relationship between gener-
alized distance functions of various types and (Scott-
Ershov) domains, both viewed as abstract models of
computation, has been explored in considerable depth.
This is especially so in relation to attempts to reconcile
these two concepts. We mention next two recent devel-
opments in this theme, the first to be found in [87, 88]
and the second in [89].

In [87, 88], partial metrics are shown to be related
to so-called Martin measurements [90]. The latter
were introduced as a quantitative means of capturing
the degree of indefiniteness of elements in a Scott-
Ershov domain considered as objects arising within a
computational approximation. Several correspondences
between partial metrics, measurements on domains, and
properties of the respective spaces are established in
[87, 88]. In the same vein, we refer to the papers
[91, 92, 93] in which it is shown, respectively, that
all domains can be equipped with a partial metric
(obtained independently in [88]); that partial metrics
can be interpreted as a non-trivial generalization of
Birkhoff’s notion of a valuation on a lattice to a
semivaluation on a semilattice; and that many of the
important constructions of Matthews for partial metrics

8See [40] for the definition of this term.
9Specifically, there is a point x ∈ X and c ∈ (0, 1) such that

for, all n ∈ N, we have d(fn+1(x), fn(x)) ≤ c d(fn(x), fn−1(x)).
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hold for the more general class of partial quasi-metrics.
In [89], generalized ultra-metrics are examined in

relation to domains. The starting point of these
investigations is the formal-balls model of [47], which
was introduced as a means of capturing properties of
metric spaces by domain-theoretic methods, including
a proof of the Banach contraction mapping theorem
(Theorem 2.3) by applying Kleene’s theorem (Page
2). In [23], this approach is employed to give a
proof of Theorem 2.4 (for f strictly contracting) by
means of the Knaster-Tarski theorem (Page 2 also). In
[89], the resulting correspondence between domains and
generalized ultra-metrics is investigated in category-
theoretic terms, and it turns out that many properties
of a generalized ultra-metric can be characterized by
conditions on its formal-balls model. Furthermore, two
modified fixed-point theorems related to Theorems 2.4
and 2.3 are established in [89]. Nevertheless, the work
of [89] casts considerable doubt on the extent to which
these methods can be used for connecting generalized
ultra-metrics and domain theory, and indeed shows that
they are somewhat limited. Despite this, we have been
able to utilize essentially these ideas in a satisfactory
way, as can be seen in the appropriate sections of
this paper. The general question of how one may
unify generalized ultra-metrics and domains, however,
remains open.

Finally, in a direction related to those in the previous
two or three paragraphs, Michael Bukatin argues in
his PhD thesis, [94], for an approach to software
engineering based on continuity and approximation
and, in particular, continuity in (constructive and
“continuous”) mathematics; somewhat similar thinking
(the use of continuous mathematics) underlies the
probabilistic semantics presented in [95]. Bukatin and
J.S. Scott take this idea further in [96] where they
propose to measure the distance between programs.
Their framework is that of domain theory, and they
show that a suitable distance function for measuring
the distance between two programs must be a relaxed
metric, a notion very close to partial metrics (again,
the axiom d(x, x) = 0 is dropped) and close to the
valuations of O’Neill [59]. Preliminary results in a
similar theory for logic programs were obtained in [97],
based on the results of [95].

8. CONCLUSIONS

Our discussion shows that there is a considerable
number of different and interesting generalized distance
functions which have significant use within the theory
of computation. In relation to the theory of
programming languages, it is true that the majority
of developments and applications (of denotational
semantics, for example) are expressed in terms of order
theory and are therefore qualitative. Nevertheless,
the results discussed here show that the quantitative
approach provided by distance functions can be viewed

as complementary and orthogonal to the qualitative
approach and indeed is sometimes indispensible, just as
it is in mathematics and computer science in general.
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