International Journal of Intelligent and Cooperative Information Systems
Vol. 2, No. 1 (1993) 23-50
© World Scientific Publishing Company

ON AUTOMATIC REASONING FOR SCHEMA INTEGRATION"

AMIT P. SHETH
Bellcore, RRC-1J210, 444 Hoes Lane, Piscataway, NJ 08854, USA
emit@ctt.bellcore.com

SUNIT K. GALA
UniSQL, Inc., 9830 Research Blvd., Avstin, TX 78759, USA

wnisgllsunit@cs, uteras. edu

SHAMKANT B. NAVATHE
College of Computing, Georgia Instituste of Technology, Atlanta, GA 30382-0250, USA
sham@ec.gatech.edu

Received 12 December 1992
Revised 8 April 1993

ABSTRACT

Success in database schema integration depends on the ability to capture real world
semantics of the schema objects, and to reason about the semantics. Earlier schema
integration approaches mainly rely on heuristics and human reasoning. In this paper,
we discuss an approach 1o automate a significant part of the schema integration process.

Our approach consists of three phases. An atiribute hierarchy is generated in the
first phase. This involves identifying relationships {equality, disjoininess and inclusion)
among attributes. We discuss a strategy based on user-specified semantic clustering. In
the second phase, a classification algorithm based on the semantics of class subsumption
is applied to the class definitions and the attribute hierarchy to automatically generate
a class taxonomy. This class taxonomy represents a partially integrated schema. In
the third phase, the user may employ a set of well-defined comparison operators in
conjunction with a set of restructuring operators, te further modify the schema. These
operators as well as the automatic reasoning during the second phase are based on
subsurnption.

The formal semantics and automatic reasoning utilized in the second phase is based
on a terminological logic as adapted in the CANDIDE data model. Classes are completely
defined in terrms of attributes and constraints. Our observation is that the inability to
completely define attributes and thus completely capture their real world semantics
imposes a fundamental limitaticn on the possibility of automatically reasoning about
attribute definitions. This necessitates human reasoning during the first phase of the
integration approach.

KNeywords: Schema integration, attribute relationship, class taxonomy, formal semantics,

human and automatic reasoning, classification, subsumption, CANDIDE, terminological
logic.

* This research was supported by Bell Communications Research, Inc.

23

21 A, P Sheth, 5. K. Galae & 5. B. Novathe
1. Introduction

Many organizations need to develop and maintain databases (either centrali
or distributed) that provide shared and comsistent access to the data by multi
applications and users. The process of schema or view iIntegration is extrem
valuable for such organizations because it can support: (1} the development
a large dara intensive application, {2) the development of multiple applicatic
that share data, or (3) the integration of several existing (possibly distribut
heterogeneous. and autonomous) databases.®

There is a body of work in schema integration [5.9,43] which views sche
integration as a well-defined task of synthesizing dependencies {e.g. functional,
clusion. and exclusion) from underlying domains. We believe that the integrat
process requires information that goes well bevond such dependencies. Some of t
reasons that aggravate the problem are [38]: (1) semantic {or other) data m
els are unable to sufficiently capture the semantics of real world ohjects in ter.
of their meaning and use, {2) 1t is necessary to capture more meta-data {dictic
ary/directoryv) information about the modeled objects than is typically captured
a scherna. as well as information about intended use of the integrated schemas, a
{3y there can be multiple views and interpretations of & given application doma
which may cliange with time. Thus schema integration involves a subjective activ
which relies hcavily on the knowledge and intuition of the user® about the appli
tion domain {domain of diseourse]. intended use of the imtegrated schema, and t
systems that manage data modeled by the schemas. Thus. the results of a scher
Integration activity are not unique and cannof be gencrated totally automaticall

An important goal of our work 1s to awtomate the schema integration proce
#s much as posstble. lu this paper, we dizscuss our views with respect to the tas
of the schema integration process that can be automated and the tasks that ha
to relv primarily upon human guidance, It 15 1o be noted that substantial hum;
work is needed before automatic tasks can be performed. The automatic tasks a
facilitated by a formal semantics and the human tasks are tied to heuristic reaseniy
driven by the user. We also discuss appropriate vehicles for perforining the bas
tasks. Spectfically, the main contributions of this paper arc:

(1) 1dentificarion of the portion of the schema integration process which can t
meaningfuily avtomated,

(2} use of the formal model CANDIDE [4) which provides subsumption and class
fication as a vehicle for automated class integration, and

(3} the development of the overall {ramework based on a three-step approach th

imvolves human interaction (that is, heuristic reasoning) where necessary ar
the use of automatic reasoning where possible.

2 The first two activities are often called view integration and the third one is often called databa
integration, Both are jointly referred 1o as schema integration in [2).

4 L .
By user, we shall mean the person who is integrating the databasc schemas.

On Autormatic Reasoning for Schema Integration 25

This paper is organized as follows. Section 2 provides the background — it
discusses relevant previous work on schema integration, the role and choice of a
canonical data model for schema representation, and introduces the problem of
schema analysis. In our approach, the schena integration process consists of three
phases, namely, schema analysis, class integration, and schema restructuring. In
Section 3, we discuss scherna analysis® which results in the specification of attribute
relationships (equivalent, contains/contained-in, and disjoint). An attribute
hierarchy can then be automatically created using attribute relationships. YWe com-
ment on the inadequacy of the attribute equivalence theory proposed in [20] and
introduce the notion of semantic clustering of attributes. The semantic clustering is
a heuristic process that 1s Jargely driven by the user. Yu ¢f ol [42] and Sciore et al
[27] investigated thie generation of a concept hierarchy that can aid in determining
attribute relationships.

Using the attribute hierarchy thus gencrated, an automated reasoning process
(called classification), aufomatically performs class integration. This consti-
tutes the second phase, called class integration, and 1s discussed in Sec. 4. The
third phase called schema restructuring phase is discussed in Scc. 5. in which we
define operators to modify the mntegrated schema to make up for the limitations of
the earlier phases. Ve thus derive a final, integrated schema. Section § gives an
example and we give our conclusions in Sec. 7.

2. Background

In this section, we briefly review related work. comment on the common model
in which automatic class integration is performed. and introduce our approach.

2.1 Previous Approaches to Schema Integration

The survey paper by Batini ef af. [2] discusses and compares 12 methodologies
for schema integration work. These methodologies are onented towards imtegration
that involve only human reasoming (ie. all relationships among schiema objects
are identified by the uscr). The portion of the integration process that can be
automatically (and meaningfully) performed in most methodologics purely on the
basis of schema definition is severely hmited. Two disiinct types of operations are
performed during integration:

(i} specifying relationships between classes based on the user’s understanding of
thie domain, and

(il} specifying mappings betwecn the integrated schema and the component schemas
{i.e. the schemas that are integrated),

“We assume that all schemas to be integrated are represented in the same data model, which in
our case happens to be CANDIDE. This approach has been extended to integrate E-H schemas
by developing mappings between Extended E-R models and CANDIDE models [33].

26 A P Sheth, 5. K. Gala & 5. B. Navathe

- The second type of operations are not strictly necessary to generate an integrated
schema, but are very useful if the integrated schemna is to be used for multi-database
access. Such mappings are not discussed in this paper.

Batini ef al [2] divide schema integration activity into five steps: preintegra-
tion, comparison, conforming, merging, and restructuring. The preintegration step
involves translation of schemas into a common data model so that they can be
compared. Additionally, it may also include specification of global constraints and
defining a catalog of naming correspondences {e.g. specifying a thesaurus that may
be used for identilying naming conflicts. homonyms, synonyrns, etc.).

The comparison activity involves analyzing and comparing various aspects of the
component schemas. including identification of naming conflicts {(e.g. homonyr and
synonym detection). domain (i.e. value type) conflicts, differences in siructure and
constraints, Conforming activities are closely tied to the comparing activities since
the comparing activities lead to an identification of what needs to he conformed.
Comparisan 15 not meaningful unless the same information or concept is represented
i a similar way 1n different schemas. Naming conflicts are usually tesolved by
renaming. Structural differences are dealt with by the conforming activities in
which some structures are transformed imo others so that the same structure is
equivalently represented {i.e. having the sarme semantics). For examiple, [1] and [32]
show how to translate one E-R structure into another. Spaccapietra et el [41] also
allow specification of assertions between the objects that are structurally different.

One significant result of schema analysis 1s attribule equivalence specification,
In the previous methodologles [22,13.20] as well as tools [11,16.37], attribute equiva-
lence has been used as a heuristic in the process of specifving how classes are related
in the component schemas. User specification of class relationships then leads o
the merging activity, which can be automated {c.g. lattice generation in [37]).

We recognize attribute relationship specification and class relationship specifi-
cation {called assertion specification in [13]} te be the most critical tasks in the n-
tegration of schermas. Attribute relationships include attribute equivalences as well
as attribute inclusions (also called contalnment}). Most earlier work was limited to
using only attribute equivalences.? Attribute equivalence is an atlempt to identify
different attributes that represent the same property across “related” classes. All
previous efforts thatl use atiribute equivalence, to our knowledge, require the user
to 1dentify the cquivalent attributes. or propose heuristics (e.g. [11.16]).

Elmasri et al. [13] discuss using attribute equivalence as a heuristic to order pairs
of classes that may be related. The user then specifies all relationships between
each pair of related classes. These relationships are used as an input to a lattice
generation or merging activity to derive a single integrated schema. Some of the
efforts, particularly those that do not usc class relationships for automatic merging,
provide a sct of operators for the user to correlate or integrate the classes 1o the
component schemas to generate an integrated schema [6,21].

Larson ef al. [20] and Bannine and Effclsberg [22] consider the equal and containment relation-
ships among domains of the attributes.

On Autormatic Reasoning for Schema Iniegration 27

2.2, Chowe of a Canonical Data Model

The data model into which all schemas are translated is called a common (or
unified or canonical) data model (CDM). If a schemna is not in the CDM, it should
be translated from its native data model intc the CDM. This process is called
schema translation. For example, to integrate a CODASYL database scherna and a
relational database schema, the corresponding CODASYL and relational schemas
should be translated into the equivalent CDM representailon to facilitate their anal-
vsis and merging (18]. Typically, schema translation is treated as an entirely sepa-
rate process from that of schema integration. Due 1o the lack of formal semantics
of the data models usually involved, equivalence can only be informally justified in
terms of the knowledge of a person doing the translation, and cannot be lormally
proved.®

The choice of the CDM is critical in the process of schema integration. The
CDM should be semantically rich, in that it should he able to provide constructs,
abstractions and constramnts relevant to schema integration. Semantic (or con-
ceptual) data models are much preferred over a traditional data model such as
relational. network, or hierarchical. However, choosing the semantic data model
as the CDAT from among many known models {c.g. those surveyed in [15.31]) is
difficult. We believe that a model that has too many non-orthogonal constructs or
abstractions may have beneflits when defining or designing schemas (by providing
constructs to the schema designer that & /he is familiar with), but is not well suited
for schema integration because it makes schema analysis and modification very dif-
ficult. Automating any part of the schema integration process would be facilitated
by a model that is formal, provides orthogonality of constructs leading to a basis
for automatic reasoning.

2.3, Proposed Approach

Here we give an overview ol three phases in our schema integration approach:
schema analysis, class integration, and schema restructuring. While these phases
can he found in many previous approaches, our framework significantly differs m
detaile. All schemas are assumed to be represented in a canonical data model (to
be defined in Sec. 4). Each component schema contains a class taxonomy and an
attribute hierarchy (see Sec. 3). The integration process involves generating an
attribute hierarchy common to all component schemas and subsequently a class
taxonomy Involving all classes of the component schema. This appreoach has been
implemented in a tool developed at Bellcore [33.39].

2.3.1. Schema analysis

The main result of the schema analysis phase 1s the generation of a global at-
tribute hierarchyv. This global attnibute hicrarchy is generated by integrating in-

“Equivalence has been formally defined in the casc of schema restructuring within a well defined
model {32].

28 AP Sheth. 5 K. Gala £ 5. B, Navathe

dividual attribute hierarchies corresponding to each component schema. Sectic
3.2 discusses a methodology based on a clustering techmique to generate the a
tribute hierarchy. In [13,22,37], schema analysis results in the specification of a s
of pairwise attribute equivalences. In our approach, insiead, an attribute hiera
chy is produced which, in addition to equivalence, also represents disjointness an
inclusion relationships between attributes.

The conlorming phase takes care of the relafivism [8] which is said to occ
when the same concept is represented using diflerent model constructs (e.p. a
entity and an attribute represent the same thing). This is a critical issue an
when necessary, we resort to the proposals for transformations among difieren
constructs (e.g. [1.17]). As mentioned earlier, the task of conforming is very strongl:
related o that of comparing hecause comparing is difficult when the representation
{constructs) do not cenform. Hence, we regard both of them as belonging to ths
schema analysis phase.

2.3.2. Class Integration

In previcus efforts. all relationships among classes were supplied by the user.
although algorithms for simple graph manipulation Lo combine class hierarchies
have been given {eo.g. fatrice generation in [13.37}). On the other hand. in our
appraach. wentification of class relationships and the subsequent class integration
process s complelely automated. This is done by classifying every class from each
componeut schema into a single class taxonomy. The global attribute hierarchy
generated in the schema analysis phase 18 used Lo perform the classification. The
resulting class taxonomy represents a partially integrated schema. The approach
m [13] relies on a classification of attributes into equivalence classes followed by a
specification of palrwise refationships between related objects. These relationships
are: equal. contained-in. contains, overlap and disjoint-but-integrate. In
our approach. the first three relauonship types are deduced [and the schema duly
restructured} by the automatic reasoner while the last two are deferred to the lat-
ter phase of schema restructuring {even though the system can deduce overlap
and disjoint — see Scc. 3). It is important to note that while use of attribute
equivalence in [13.37] Is only as a heuristic to facilitate the object class assertion
specification, in our approach, the information contained in the attribute hierarchy
is fully exploited for merging various schemas {see Sec. 4.3}

2.3.3. Schiema restructuring

In some of the previous efforts. merging and restructuring have not been treated
separately [see Sec. 2.8 in [2]). However, use of an automatic reasoner necessar-
ity makes these tasks distinct. The case of disjoint-but-integrate mentioned
above can be salely specified only by the user in the schema restructuring phase.
Alternatively, this relationship may be considered during the schema analysis phase
while creating the attribute hierarchy. Since we believe that semantics cannot be

Y

On Automatic Heasoning for Schema Inlegration 29

complelely represented and automatically reasoned about [15.36], we provide a set.
of well-defined cperators to allow the user to make any changes to the partially
mntegrated schema. The elass integration phase merges the component schemas into
a single schema. The schema restructuring phase involves user driven modification
of the integrated schema with a well defined set of operators defined in See. 5.

3. On Attribute Relationships

Here we show that the atiribute descriptors as defined in the schema mtegra-
tion literature are only a partiel {isf of characteristics and therefore inadequate to
establish equivalence. VWe next describe our methodalogy to generate an attribute
hierarchy.

3.1. Comments on Atiribute Fguivalence i Previous Works

Use of attribute equivalence for schenia integration has been discussed in [22,20].
In [20]. an atinibute is defined in 1erms of the following descriptors [i.e. meta-data
information): Uniqueness, Lower Bound, Upper Bound, Domaln, Static Seman-
tic Integrity Constraints, Dynannc Semantic Integrity Constramnts, Security Con-
straints, Allowable Operations. and Scale. Furthermore, they tie the attribute to a
class {entity type or relationship 1vpe} definition. The attribute equivalence theory
proposed by them essentially states that if there exists a certain mapping function
between the domains (1.e. the value set) of two attributes, then the two attributes
are said to be equivalent. They further define different types of equivalences based
on whether the mapping 1s an 1somorph and whether the mappings hold at the cur-
rent time or for all values of time. However. these details are inconsequential to our
discussion. We now chserve that this attribule equivalence definition is tncomplele
and wadequate. First, the particular set of deseriptors used to define an attribute
are arbitrary. That is, we can alwavs add some tuore descriptors or choose a dif-
ferent set of descriptors. These descriptors are mostly relevant to the information
that is traditionally stored in a schema. Second, the descriptors fall to capture
the semantics of an attribute. For example, consider two attributes person. name
(i.c. attribute name belonging to an entity Lype persen) and department.name.
We may be able to define a mapping (possibly isomorphic) between the domains
of these two attributes, and thereby, according to [20], declare them equivalent.
Unfortunately, this is contrary to the intended semantics of the two attributes,
Furthermore, according to [20], the user has to define the wmappings. We do not
dispute the utility of defining the domain mappings {they must be defined in order
to allow multi-database access from an integrated schema), but the existence of a
mapping does not imply attribule equivalence in the semantic sense. Furthermore,
we do not know of a particular set of descriptors with which to compute attribute
relationships. At best, given a set of descriptors, ane can define heuristics that
may help in discovering attribuie equivalence. However, such heuristics may either
make incorrect equivaiences or fail to detect all meaningful equivalences. The 1ssue
of schematic and semantic relationships has been discussed in more detail in [36].

30 A, P Sheth, 5. K. Gala & S, B. Navathe

3.2, Attribute Ihicrarchy Generation

The purpose of data modeling 15 to create an isomorphic mapping between the
intended real world semantics of a given universe and its symbolic representation
on a machine. 1t 15 this isomorphic mapping which allows us to manipulate real
world concepts (or objects) on a machine in a meaningfu! manner. As mentioned
earlier. within the framework of schema integration, we are interested in identifying
relationships among attributes and among classes that lead to the creation of an
integrated schema consisting of a taxonomy of classes. In our approach, we first es-
tablish attribute relationships. which then help us in aulomatically computing class
relationships. Note that this step is optional, that 1s, the class integration algorithm
(to be described in Sec. 4} does not require an atiribute hierarchy as mandatory
input. The attribute relationships of interest are equivalences and inclusions. That
is. for two attributes. 2 and b, one of the following hold:

(1) a and b are equivalent, or a = b,
{2} a contains {is-contained-in) b.ora D {C}b.

(3) If neither of the above. theu a aud b are disjoint.

Qur attribute hierarchy is a strict partial ordering of inclusion relationships /
Given the relationship between every pair of attributes. an attribute hierarchy can
casily e generaled [22]. We now propose heuristics {or reasoning about attributes
as follows.

We limmit our universe to

(1} assertions about attribute definitions, and their relationships, and

(2} assertions about object definitions. and their relationships.

Les RWS(U) denotle the intended real world semantics for some universe of dis-
course U, Further, lei RWAS(a) denate the real world semantics of an attribute a,
and EWCS(¢) that of a class ¢ in U. We can now define a semantic space? for the U
in which schemas are being integrated as follows:

RWS{U) = {RWCS{ci)} U {RwaS{aj)}, 1 € i <m, 1 £ j<n

where m. n are the total number of classes and attributes in U, respectively. Ve
assume that class definitions are denoted by single-place predicates P(x) and at-
tributes are denoted by two-place predicates G(x, y).* Here, we define a framework

¥ - - . . .
7 This is a restriction imposed by our canonical data model, It further implies that it is nat possible
to model overlapping attribuites.

#The semantic space is seen as an abstraction of the semantics in the user's mind.

A This is a reasonable assumption since one can always transtate object definitions in most struc-
tured representation schemes (such as semantic data models, semantic newworks and frame de
scription languages) into equivalent logic statements which consist of only single- and two-place
predicates. For example, PareniOfMen(s} — Parent(r) is the same as {Parent OfMen} C {FParent},
and means that for all values of = in the universe satisfying the predicate ParentOfMen, those

same values must also satisly the predicate Parent. A similar argnment is made for attributes, an
example of which is Son(x, y} — Child{z, y).

On Automatic Hegsoning for Schema Infegration 31

within which we can formulate a theory for attribute relationships. A given uni-
verse 1s dichotormzed into two subspaces in this manner so that we can first reason
about attributes and then about classes. As argued in Sec. 3.1, a complete speci-
fication of the real world semantics for atiributes is not possible. This unposes a
fundamental himitation, and therefore, we describe some heuristics below to define
an attribute hierarchy. On the other hand, it is possible to define a limited madel

for classes (or entily types) in which we automatically determine class relationships
(see Sec. 4},

The problem of attribute equivalence can be broken into two subproblems:

{11 moving from the space of attribute labels and their characterization to its cor-
responding semantic space RWAS (i.e. establishing a correspondence), and

(2) generating an attribute hierarchy in the semantic space.

By looking at Fig. 1, we can see thal the links between the attribute definitions
space S {Q(x. y)} and the semantic space RWAS {Q (x, y)} denote the mappings:

f: G{x, y} — RWAS(Q(x, ¥)).and
g . RWAS(Q(x, y)) — {Q(x, y)}

It can be easlly seen that the mapping £ s 1-1 whereas the inverse link g is 1 — n.
Comsider a poiut Qi {x. ¥) in the semantic space. Corresponding to this point we
can have many points, Qij (x. vy}, in the attribure definition space. For exam-
ple. we see that the attribute labels emp_name, worker_name and name map onto
the same point in the semantic space. This necessarily means that the three at-
tributes in question are equivalent in U. Additionally, there are other attributes
person_name and student name which map onto two other distinct points in the
semantic space. Simullarly, emponum and ss.num map onto two distinet seniantic
pomts. while depf_name maps onto yvet another semantic point.

We now make the following ohservations:

o Since emp.name, worker_neme and nente map onto the same semantic point Qy.
they are semantically equivalent,

o It is also the case in our universe that persen_name aud student_name which map
onte Gz and Qs respectively, are related to Gy and are therefore located close Lo
each other and to Qy in the semantic space.

o emp_num and ss.num map onto Qg and Qg respectively, and their distance from
Gy 1s greater thian thal between Qg and GQs.

o Onthe other hand, depi_name maps onto the semantic point Gg whicl is disjoint
fram Q1.

The above suggesis a certain classification pattern based upon equivalence and
inclusion rclationships between atiributes as well as their relative meaning. Thus,
we can define the following clusters in our sermantic space, called sementic cluslers:

32 AP Sheth. 5 K. Gala & 5. B. Navathe

ENp_Nams

WOrKEer_Name

i name

IT]g. 1. .\iapping attributes into sermantic Space.

{1} 8Cy = {G1. Gz. Qa}

The semantic cluster denoted by SCy, labeled as people_names for convenience,

includes emp_name, person_name and studeni_name (the set is non-exhaustive

and mutualiv exclusive). However, it may also be the case thar Qy C Qg and Qa €

Gz. This = equivalent 1o saving that RWAS(emp name) C RWAS(person._name)

and AWAS(student_name)] C RWAS(personname). Thus, there may be a strict

ordering within a given semantic cluster. However, any two semantic clusters
" are necessariiy disjoint. This hierarchy is shown in Fig. 2.

(2} SC» = {Qa. G5}

The cluster SCy labeled people_mumbers contains, among other semantic points,
emp.num and ss_num.

(3) SC3 = {Qe;
{4) SCig = SCyo 50,

This is a semantic cluster labeled say, people_identifiers, which includes. among
other things. the clusters people_rames and people_numbers. Again, this cluster
15 a nor-cxnaustive and mulually exclusive union of two semantic subspaces.

On Automatic Reasoning for Schemn Integration 33

TOP

,"/’S'C W-”UF jers
SC 1. people_names SC2: peaple_numbers SCA thing_narne
i /\
Ve
i 2 Q5
Q1 03 S

Fig. 2. An example atiribute hierarchy.

We now propose the following methodology to deal with attribute equivalence
and inclusion:

(1) Make a list of all attribute names appearing irs all the schemas to be integrated.

{2) The user {a domain expert or DBA) must now dentify various appropriate
semantic clusters (this can be done in advance or dynamically when considering
a new attribute not belonging 1o a previously defined semantic cluster].

(3) All sets of equivalent attribules should be determined and each set must be
denoted by a unique RWAS,

{4) All remaining attributes are then assoclated with their respectively unique
RWASs.

{(5) Lach RWAS is placed in exaclly one semantic cluster based on the judgement
and intuition of the user.

{0) Now that each semantic cluster contains a set of unique RWASs, the user can
specify pilece-meal mformation about inclusion between two RWASs within the
same semantic cluster (recall that any two semantic clusters are necessarily
disjoint), which is then assimilated into a strictly ordered hierarchy.

The global attributle hierarchy thus generated can be used to merge n different
schernas.

3.3 An Underlymng Assumnption

Ve identify two different kinds of attribute relationships, namely, those that hold
true througheout the universe of discourse, an¢d those that hold true only within a
given class. For example, consider the class of person with attributes son and
the class parents-whose-sons-are-business-partners with attributes son and
business-partners. We observe two facts about this universe:

e It makes sense to say that any value in our universe that satisfies the attribute
son {regardless of what class it is attached to) also satisfies the attribute child
(regardless of the class to which it is attached), i.e. son C child.

34 A, P, Sheth, 5 A Gala & 5. B. Navathe

o A similar relationship cannot hold between son and business-partners because
their relationship 1s merely a constraint imposed on them in order to define the
class in question. The relationship son € business-partners does not hold
outside the class parents-whose-sons—-are-business—partners.

Such a distinction is not made in previous works on attribute equivalence. Thus,
the afiribule relationships (in lerms of equivalence or inclusion) should be deter-
mined such tha! they are valid throughout the domain of disconrse. This is neces-
sary since the classes of the component schemas are merged against a single global
attribute terarchy. Therefore. attribute relationships within this hierarchy must
hold true throughout the umverse of discourse. While an attribute’s association
m the class as it appears in the component schema may provide part of the (and
In some cases significant] semantics required to determine a relatonship with an-
other attribute. 1t is neither the only nor the overriding factor. For example, when
considering attribute age in class Employee and attribute age in class Engineer,
we may wish to refler 1o the semanties of age in persons, humans. or living organ-
isms [regardless of whether corresponding classes appear in the original schemas)
and lirnit the semantics of the attributes to the classes that they help define in the
compaonent schiernas. Attribute relationships that hold only within a single class
definition {¢.g. car.model and car.model.option) have no place in the global at-
tribute lierarchy {and should be dealt with in the class integration phase) *

4. Class Integration

This is the second phase of our approach to schema integration, i which various
class relationsiups are automatically deduced. We first describe CANDIDE, our
canonical data model. in Sec. 4.1, Then we give an example of class definitions.
and show the role played by the attribute hierarchy in computing subsumption in
Sec. 4.2, In Sec. 1.3, we discuss why CANDIDE was chosen as the canonical data
model.

4.1 Overveew of the CANDIDE Duata Model

CANDIDE belongs to the KL-ONE [7] family of systerns, also known as ternu-
nological logies or term subsumption languages. It is essentially an extension of the
KAXNDOR knowledge representation system (30]. This extension involved using a
notation that couforms o the more common data modehing terms, and adding con-
structs to simplify representation of standard data domains. For example, we have
added the domain constructors range, set. and composite domain, and allowed
for additional buili-in domains such as real, These do not really increase the power
of the madel or affect computational complexity; but they imnprove the applicabil-
ity of the model. CANDIDE s a correct and complete model of computation and

Such constraints can be represented in a sysiemn as expressive as KL-ONE [7] {in which computing
subsumption is undecidable}, but not in the CANDIDE systermn (in which computing subsuwmption
is decidable and is at least co-NP-hard}.

On Automuatic Reasoning for Schema Integration 35

the probiem of computing subsumption in CANDIDE is at least co-NP-hard {25].
CANDIDE can be viewed as an orthogonal, minimal, and relativistic model {13). A
complete description of CANDIDE can be found in [3, 4], It was employed in the
Federated Information Base project as the canonical model [24]. Here we provide

a description of somne of the concepts, particularly those that are relevaut to class
integration.

4.1.1. Structural aspecets of the data model

The CANDIDE model explicitly supports the abstractions of aggregation and
generalization, A relationship or assoclation between two or more classes 1s modeled
ax a class which is the aggregation of attributes referencing each member class (of
the relationship). 1 addition to other possibie attributes which the relationship
may have.

The database schiemna consists of two partial orders. one for the atiribute hier-
archy. and the other for the class taxonomy. In the attribute hierarchy. which lias
a root called “Top™. cach atiribute can have at most one parent attribute along
with an associsted domaln. This domain is either an tustance, or a set of lnstances
typified by a class defined in the class taxonomy. The dorain of an attribute st
be ab improper subelass of the domain of its parent attribute. The root of the class
taxonomy $ a universal class called “Thing”.

An attribute appearing 1 a class description can be qualified by additional
value constraints on its domain specified within the class descriplion. Further,
these attribute constraints in a class must logically imply the constraints on cach
corresponding attribute of each of its superclasses. Sucl constramnts also specify
satizflability requirements for instances to be members of the class. A class cau
have many superclasses. subclasses, and instances. A disjoint class micans that the
named subclasses of a given class cannot have any conunon nstance.

4.1.2, Constraint specification

A class description comprises its superclasses, subclasses, instauces. and at-
tributes. Oue can specify additional constrainis on these attributes. There are four
kinds of constraints: max. some, exactly, and all. The max n constraint means
that an attribute can have at most n values. The some m constraint tmeans that
there exist at least m values, each value belonging to a certain doman gualified by
value constraints. The exactly constraint means that exacily a specified number
of attributes must satisfy a value canstraint; it is the combinauion of some n and
max n. The all constraint specifies that all values of an attribute must belong to
a given domain qualified by value constraints. Note the similarity of the all and
some constraints to the universal and existential quantifiers of first order predicate
calculus [19].

Value constraints on attributes specify domains. Domains may he specified by
naming the class as in class {classname), string, integer or real, or by using the

36 A, P Sheth, 5N, Gala & 5 B, Navathe

domain constructors range, set, setdif, and composite. Range specifies a range
of values between some upper and lower bounds which may be meclusive, exclusive. or
nil (= infimity), and is typed over reals and mtegers. The set construet allows a set
of domains to be specified such that the attribute values must belong to the union of
these domains. A set may recursively include other value constraiuts. setdif aliows
a special form of negation {set difference) to be handled in & safe way. For example,
“setdif [g", where f1s a class and ¢ is its subclass, denotes a set consisting
of only (hose instances belouging to f and not to y. The composite domain is
the aggregation of other {possibly complex) domains, in which each component
domain is labeled by an attribute namie along with its constraints. For example. a
composite domain {or an attribute called Dafe would have component attributes
of Month, Day, and Year.

4.1.4. Classification and subsumption

A class f subsmnes a class g 1if and anly f every instance of ¢ s also an
instance of f ie fis asuperclass of g. This subsumption relationship is conputed
on the basis of whether the attribute constraints for class g logically nuply the
corresponding attribute constraints for class f. Computing subsumption can be
automated because a class definition provides necessary and suflicient conditions
for deciding class membership. The classification operation can compute nussing
class-subelass relationships (that 15, those left unspecified by the user when building
the class taxonowsy) by a controlled applicavion of the subsumption function. and
can completely specify the class taxonomy.

Classification can be viewed as the process of correctly locating a new class
an existing taxcuory. The correct location Is immediately below the most specific
classies) which subsume the new class and umnediately above the most general
classics) subsumed by this new class, Oune sitnple way of generating a class taxonammy
15 to take the transitive reduction over a boolean matrix generated by applying
subsuwmption between all possible pairs of classes in the schema. Since there are
n? such pairs. classification is an O[n?) algorithm where the fundamenta) unit of
cowputation is the subsumption operation.

4.2, Role of the Attribute Hierarchy tn Computing Subsumption

Teo see how subsumption can be computed in CANDIDE, consider an example
of two classes, where ¢y 15 defined to have an attribute clidd with the domain man,
and cv is defiied to have an attribute son with the domain persen. Suppose that we
arc also given that maen 1 beneath person in the class taxonomy and son 18 beneath
child in the attribute hierarchy. These classes are defined in CANDIDE as follows:

class oy defined
superclass thing
attributes

child: all class man

On Automalic Reasoning for Schema Integration 37

class ¢o defined
superclass thing
attributes

son: all class persen

Therefore, ¢ is above e1 in the class taxonomy when subsume {c3, ¢;) = true. This
happens if and onty if the logical constraints on ¢; — logical constraints on ey, le.

chifd: all class men — son: all class person

This can be derived as follows from a set of inference rules that deflue the compu-
tation of subsumption. From these rules, we know that

if attribute r is above ¢ then r; all f — 5: all f.

Since child 1s above son 1 the attribute hierarchy, applying this rule 1 our example
tells us that

child: all class man — son: all class man
There 1s another inlerence rule which savs that
if subsume(g, f) = true then s: all f — s all p.

Since person is above man 1n the class taxonermy. applyving this rule n our example
tells us that

son: all class man — son: all class person

Therefore, from these two deductions, we have by transitivity of implication,

child: all class man — sou: all class person

Thus without explicitly having stated anything about the precise definition of
son. but Just based on information ahout the child-son and person-man inclusion
dependencies, we were able Lo determine thal ez subsumes ¢;. The formal semantics
of CANDIDE are derived from KANDQOR which appear in [30]. along with a decision
procedure for computing subsumption. 1t is important w note that this inference
could not have been made if we did not have information about the wclusion of
son within child in the attribute hierarchy, Thus, the class taxonomy contains
information about the inclusion relationship between single place predicates wliereas
the attribute hierarchy deals with two-place predicates, The decision procedure for
computing subsumption allows us to automatically generate the class taxonomy
based on object definitions given an attribute hierarchy. If the attnibute tierarchy
is a flat structure (i.e. a tree of depth 1}, then this lack of depih will be reflecled
in the class taxonomy. For example, given a flat avtribute hierarchy, we cannot say
things like every son is necessarily a child. In such a situation, the system could
never have deduced that ¢; i1s a subclass of ¢p. Further, note that a flat attribute
hierarchy structure is the same as having no atiribute hierarchy at all, or rather,
just a list of attribute names. This means that the previous siep of building an

38

A. P. Sheth, 5. K. Gaola # 5. B. Navathe

attribute hierarchy is entirely optional with a caveat that attributes with the same
name will be assumed to have the same meaning.

4.8. Choiee of CANDIDE us the Canonical Data Model

(1}

(6)

There are many reasons for choosing CANDIDE as the canconical data model.

It has a well defined semantics which allows us to automatically compute the
class-subclass (subsumption) relationship. That is, the system can reason about
class definitions in a correct and complete manner.

The same subsumption function can be nsed to decide whether

{a) a given class s incoherent,

{b) 1wo given classes are disjoint,

{r) twa given classes overlap, and

(d} two given classes are equivalent.

CANDIDE iucorporates an attribute hierarchy as an integral part of the data-
base sclicina definition, Le. 1t 1s assamed that an attribute hicrarchy is given
to the systemn. This allows us to dichotemize between lieuristic reasouing (to
determine the attribute hierarchy} and automatic reasoning {to determine cluss
rejattonships). This means that the question of whetlier an attribute a 1s above
b in a given hierarchy is treated like an oracle. Thus. the svstem does not care
how thie attribute hierarchy is gencerated. but given one, it will correctly reason
about class definitions within the schema. In other words, information about
attribute inclusion is exploited in the inference rules for computing subsumption
in a sound fashion.

It is a nunimal model as w0 allows only the generalization and aggregation ab-
stractons 40]. The schiema graph {or class taxonomy) can be generated by using
only thie two abstractions provided. A class (or nade in the schema graph) can
be defined by specifving cardinality and domain coustraints for each attribute of
Lhe elass. These two kinds of constraints are orthogonal 1o each otlier. Domaius
cau be atomic. simple or complex (generated by using the domain constructors).
Tt 15 a relativistic model since the syvstem semantics allow us to automatically
determine that two different {forms representing the same concept are equivalent.
This is done by reducing such elass equivalence to computing bidirectioual im-
plication of the constraints on each corresponding attribute defiuing the classes
in question {see Sec. 5.1).

The CANDIDE classifier computes the minimal superclasses and masximal sub-
classes of a given class by emploving the subsumption function as described
above. Thus merging n schemas essentially reduces to classifying each class in
each schiema to generate a new or giobal schema. This schema is generated by
modifying the class-subelass links for each class as dictated by the classification
function and is independent of the order 1n which schemas or classes are chosen
for merging. Note that the aggregation links are left unchanged. Also, no new
classes are created that did not already extst in at least oiue of the n schemas.
We shall see more about this in Sec. 5.

On Autemuatic Reasoning for Schema Integration 39

The first two itermss 1mply that there is no need for the user to specify the class
assertions of the type equal and inclusion (contains/contained-in} as in [13.27] since
the classifier automatically deduces such assertions. Furthermwore, subsumption
can be used to deduce “overlap™ and “disjoint” relationships between two classes,
Haowever, the classifier cannot generate a new class and cannot decide whether two
classes that overlap or are disjoinl should be merged {we elaboraie this in Sec. 3).
These two cases are handled in the third phase by the use of appropriate operators
by the user.

5. Schema Reorganization

After the n component schemas have been merged, the user can employ a set of
well-defined operators to reorganize the schema. We first define a set of camparison
operatars which help in determining class relationships, and then a set of restruc-
turing operators. We then discuss some guidelines for applying these operators to
restructure schemas,

3.1 Operators to Determmme Class Relafiouships

As mentioned above, it 1s important to automatically compute various class re-
latiouships such as equivalent. includes, is-included-in, overlaps. and dis-
jeint, The subsume function computes includes and is-included~in i an ob-
vipus manner. We now give a few definitions which show how these relationships
cap be computed with the help of the subsume function. Let f. g be two classes
and K|f]. Ely] represent their respective extensions. i.e. set of instances.

[1i Subsume
subsume {f. ¢) = trae iff £if] D Ey)

However. as explained in Sec. 4.1.3, subsumption 1s computed on the basis of class
defiitions and not the actual extensions. This means that the subsume function
returns truc if aud only if the constraints on each atiribute of ¢ logically wnply
the constraints on the corresponding atiribute of f. Therefore, subsume (f. g1 = f
includes g = g is-included-in f.
{2} Equivalence

equivalent (f, g} = truc iff £[f] = Fg
This function can be computed using subsumption as follows:

equivalent (f, y) = subsume {f, g) A subsume {g, f)

(3] Overlap
Overlap is defined as follows:

overlap {f, ¢} = truc iff E[(f]" E[g] £ 0

40 A, P. Sheth, §. K. Gula £ 5§ B. Navathe

Dverlap cau be computed as {ollows:
overlap (f, ¢) = true iff subsume (f, g) A — subsume (g, f) A = disjoint (f, ¢)

That is. wwo classes overlap if they do not subsume each other, and are not
disjoint. As an example, consider the two classes Instructor and Student. They can

overlap because an instance of Inmstrucior may also be an instance of Student, such
as a Teaching Assistani.

(41 Disjoint

Two classes are defined as digjoint if the intersection of all possible extensions
of the two classes 1s empty.

disjeint (f, g) = true iff E[f]n £[g] = ¥
Disjoint cau be computed as {ollows:
disjoint (f, g} = true iff inccherent {conjunction(f. g)]

Here conjunction is a function which returns a new class from two given clusses
such that tie extension of the new class is the intersection of the extensions of the
given classes:

Eiconjunction(f, ¢)] = E(fin £lg]

Inccherent is a boolean function which tests for logical inconsistency in cou-
straints ot the attributes of a given class. For example, the maximum cardinality
cannot be less than the minimum cardinality on any attribute {for more details
see (30'). This means that there cannot be any instances of an incoherent class:
I’ [incoherent{f)j = & We conipute incoherency of a class by checking if the class
is subsumed by a kuown incoherent class: incoherent({f) = subsume(:z, f) where ¢
15 a known ineoherent class.

For example. the class Part-fime-student from schema scl with the constraint
that a part-timee student can register for a maxlwwm of nine credit iours, and
the class Full-time-sfudent from schema sc? with the constraint that a full time
student must register for at least 12 credit hours, clearly show that there cannot
be a student who is both part-time and full-time. As another example, if a class
Student-eventng-club has the constraint that 1t must have at least two part-time
students among its members and the class Heonor-soctety has the constraiut that
only a full-timne student can be its member, then these two classes do not have a
common instance. A conjunction of these two classes will lead Lo an incoherency.
Therefore, the classes are 1dentified as disjoint.

The functions defined above are based on the ability to compute subsumption,
i.e. they are based on the semantics of class definitions. However, 1t 15 possible to
define boolean functions which return true or false based on more syntactic crite-
ria such as attribute relationships. Therefore, we define two additional operators.
These are merely alternate defimtions of the notions of overlap and digjoint. They

are defined here because the user may wish to use these definitions rather than the
ones defined above.

On Autornatic Reasoning for Schema Integration 41

(0} attr_overlap(f, g)

This function returns true if and only if there exists at least one pair of attribules

el and a2 such that ¢l = a2 or al C a2 or 22 C el where al is any attribute of f
and a2 is any attribute of g.

(6} artr disjoint(f, g)

This function returns true if and only if there does not exist any pair of attributes
al and a2 such that al = a2 or al C ¢? or a2 C al where @] is any attribute of f
and a2 15 any attribute of g.

All these functions can be computed automatically. The user can now restruc-
ture the giobal schema based on his or her perspective of the universe of discourse
with the help of these functions.

3.2 Nehema Restructuring Operators

This second set of operators can be used Lo create new classes {rom existing
ones and/or delete existing classes. The schema integrator uses thiese operators to
restructure the schema.

o delete(f): This funcuon will delete the class f from the mtegrated scherma and
ctieck for consistency. If the resuhting schema is found inconsistent then the user
i alerted with an appropriate message. For example, it might Le the case that
there 13 a class “studemt™ which hias an attribute “belongs to”, the domam of
which iz the class “department” which was just deleted. Such deletion will be
disallowed.

¢ ¢ = generalizel(f, g}: The two classes [and g are generalized to create a new
class ¢ (the label for class ¢ is provided by the user, e.g. teacher = general~
izel(faculty. tnstrucior). Only the comimon attributes are chosen for ¢ and a
union {or legical disjunction) of the coustraints on these attributes is defined.
The resulting class is checked for incoherency, and is well-defined if the {ollowing
relationships are satisfied: E{f] 2 Elc] and Ely] 2 Eic),

s = generalize2(f, g}: The same as generalizel except that f and g are now
deleted from the schema. This is useful when there is no need for definitions
af the classes in the component schemas from which a class in the ntegrated
schema 1s derived. An example 1s when a new database 15 created based on the
mntegration and potential users have their own view of what the schema should
look like (e.g. once Lhe two classes schemal.employee and schemaZ. employee are
generalized to create final employee, there may be no need to keep the original
two verstons of employee 1 the mtegrated schema).

¢ ¢ = speclalizel(f, g): The two classes [and ¢ are specialized to create a new
ciass ¢ (the label for class ¢ is provided by the user). For the common attributes of
[and ¢ chosen for ¢, the logical conjunction of the constraints on these attributes
18 defined. The remaining attributes are merely concatenated to the definition of
¢. The resulting elass is then checked for incoherency, and 1z well-defined if the
following relationships are satisfied: Efc] 2 E[f] and Ec] D Eig].

42 A. P. Sheth. 5. K. Gala & 5. B. Nuovathe

s ¢ = specialize2(f, g): The same as specializel except that f and g are
then deleted from the scherna. This function is needed for similar reasons as
generalizel.

3.5 Applyimg Functions te Integrale Schemas

To integrate two schemas, sel and s¢2, we apply the above class comparison
functions between each pair of classes f and g such that f € scl and g € sc2. (It is
asswined that each individual scherna is already “well-defined”. By well-defined, we
mean that there are no inconsistencies in the individual schemas.) Whenever two
classes are identified as equivalent, they are merged into a single class. Similarly,
when one class subsumes another class, the integrated schema is appropriately re-
structured. The user then applies the schema restructuring operators to get a final,
integrated schema based on his knowledge of the universe of discourse. Disjoint
or overlapping classes may or may not be merged depending on the situation. For
example. firds and aircraff may be disjoint classes, but can be merged under a
common superclass calied flying objects by executing the following operator: fly-
ing_objects = generalizel{birds. amreraft). Similarly, mstruciors and students may
overlap. and can be possibly merged to form a common subclass called teaching
assistants. On the other hand. even though courses and instructors are related in
the sense that instructors teach courses, and regardless of whether they overlap or
are disjoint. theyv need not be merged into a common class. Such decisions are and
can be made solely by the user.

Shown helow are two types of class relationships: mergeable. and nen-mergeable.
If 1wo classes satisfy the semantics for equivalence or inclusion relationship based
on subsumption. then they are abviously. mergeabie. However. as explained above,
if two classes overlap or are disjoint, then user mmtervention is required to decide
whether they are mergeable or not.

class relationships

mergeabile non-mergeable
¥
equivalent overiap
inciusion disjoint

The following rules provide guidelines to decide mergeability which the user can
exploit to restructure the schema:

(1) if class-rel = equivalent or includes then merge in obvious manuner.

{2} if class-rel = disjoint or overlap and the two classes have a common
ancestor other than root then the two classes can be generalized.

On Automatic Reasoning for Schema Integration 43

{3} if class-rel = overlap and the two classes have a common subclass then
the two classes can be specialized.

{4) if class-zel = disjoint or overlap and the two classes do not have a come-
mon ancestor other than root then the user makes a decision.

(5) if class-rel = overlap and the two classes do not have a common subclass
then the user makes a decislon.

The first rele is already taken care of in the schema merging phase described
earlier since it is the result of the classification function. The second aud third
rules can also be incorporated as part of the automatic reasoner. Ilowever. user
mterveution becomes a must when one of the last two rules Is triggered.

6. An Example of Schema Integration

We now show liow cur approach will apply to a siinple example used in [13].
Figure J shows two E-R scliemnas, 51 and s2. to be integrated. Figure 4 shows the
equivalent CANDIDE schiemnas cousisting of the respective attribute nerarchies and
class taxonomies. Figure 5 shows the attribute hierarchy against which these two
schemas are to be lntegrated.

The attnbute hierarchy essentially represents the varicus senwntic clusters and
the attribute relationships within a given cluster. For example, Name of De-
partmen! 1o scliema sl is equivalent to Name of Depertment in schers s2, and
Student. Name C Grad_Student. Name. The distinction between poiuts in the se-
mantic space and the attribute defimtion space can be dropped once thie attribute
relationships have been decided by the user. Any set of equivalent atiributes miust
be replaced by a single label since they all map onto the same semantic poiut {and
also given the fact that the attribute hierarchy actually represents the relationships
between seinantic poiats). Further, ambiguity may be resolved by appending the
attribute by a scherma identifier as in s Deparfment. Entities and attributes can
hiave the same labels — this causes no ambiguity in the CANDIDE classifier.

All attribute relauonships need not be known in advance. Lhe integration pro-
cess call be iterative in the sense that if the user is not satisfied with the resuits
obtained by classifying each class in all schemas being integrated. s/lic can modify
the attribute hierarchy and start again. Thus the user can start with a flat strue-
ture (the same as having no attribule hierarchy) and iteratively modify and refine
this structure untl a satisfactory schema is achieved. The classification process
essentially rcorganizes the entities in each schema by discovering the class/subclass
relationship among entities regardless of which sehiemas they ocecur . Tlis phase
is called class integration and 1s followed by the schema restructuring phase. Figure
6 shows the result of class integration in our example. Figure 7 shows the finally in-
tegrated schema including the effects of schema restruciuring operators. Note that
the mere application of the classification function will not result in the gencration
of new classes (entities) such as E_Stud_Faculty. Furthermore, the names of newly
zeneraled classes are given by the user,

44 A, P Sheth, 5. K. Gala & 5 B, Nuvathe

. —_—] -/,,/j\\ | — '—'__|
' student — Majors “>—~—‘ Depariment l
| : ‘X -

| T
S CTRN T —. TR
(Nome) (GPA D (Gegree> ame 5
{a)
.’:_-i‘:[mnc:\, (’E ?:
!
i ' /’./H""--.\.
| | - e
Grad_Student —————_ Sludies T
L e M'\ '|
Department !
i_ Facul : / H'x“m/ I
aculty e Warks : /J\
/ .
1 T~ (Name)
i !
CRamed (Gamy D -
Qame) CSatary) Cdegree)
{b)
Fig. 3. Input schernas 51 and s2.
—_— Aggregation
o . _— Generalizalions
Degree l———’\ Majors |
/;ﬂ-q__ _,___/"\\
// ™.
/ \
5_Name :"/ \J—R
u h \\ (//’ -, D_NEHTIC
GPA | Student J i Depariment Y———e
> —— — \\Mw__,/
]

(i1}

Fig. 4{a). {i} CANDIDE class hierarchy for s1. (i) CANDIDE auribule hierarchy for s2.

On Automatic Reasoning for Schema Integrafion 45

o
F_Mame Salary f\ Works

\ﬁT ____,,._,/"""/)“‘—u:_‘\\\

/ acy .
l‘_”_/ N

T D_Narme
| Depantment j————®
G d 5_; -h__/—'(__‘-
rad_Student
\VA“
-
; / l \\\\ /
’ S //
G_Name GPA N
S
deics i
o
(i
& F_Mame
’// sa
- . ary
o
P T
/ = G_Name
- —
Top @i
o —_—
R ~——— ¢ GPA
N
\ x__\x“.
\ x__‘\ -
\ e Drgree
S~
~w D_Name

Fig. 4{b}. (i) CANDIDE class hierarchy for s2. (i) CANDIDE attribute hierarchy for 52,

& Name - ———a §_Name ~——a G_MName

- R"\o F_Name

— Salary

e
x:ﬁﬁ_‘““—m . GPA

\ H\«. Degree
.
\' D_Name

Fig. 5. Result of Phase It Global attribute hierarchy.

46 . P. Sheth, 5. . Gala & S. B. Navathe

/.-——
{ D_Stud_Faculty

o \

\w .

/;;ud Major

Csmamn >
\ //

Y Department y
\"\-u______‘_”__'_'_'_,_/

Fig. 6. Tlesult of Phase IT + l1I: Integrated CANDIDE schema.
L _Stud.Fuculty = generalizel (Student, Faculty)
E_Siud.Major = generalizel (Studies, Major)

The integration phase 18 independent of the order 1n which schemas are inte-
grated, and can be described by the following steps:

{1} Translate each E-R schema into an equivalent CANDIDE schema (see [33] for
more details),

{2]

Optionally, define an attribute hierarchy using the guidelines presented n Sec. 3

This hierarchy will be used for integrating all schemas in a given domain of

discourse.

{3} Start building the integrated schema by beginning with some arbitrary schema
and classify each entity in that schema with respect to the mtegrated schema.

(4) For ali remaining schemas, ¢lassify each entity in each schema.

{3) Apply schema restructuring operators to make further modifications to the in-
tegrated schoma.,

(6) If the integrated schema is dissatisfactory, refine the attribute hierarchy and
reclassify all classes in the integrated schema. Repeat Step 6 until the inte-

grated schema can be made satisfactory by applying the schema restructuring
Qprerators.

On Aulomabic Reasoning for Schema Integration 47

Steps 5 is driven by the user, and was discussed i1 See. 5. As an example, the
faculty and msirucior entities can be generalized nto the feacher entity, and feacher
and student can be further generalized into person. The number of iterations (that
18, Step 6) is also decided by the user.

7. Conclusions

We have discussed certain limitations of previous approaches to schema integra-
tion, especially with respect to automatically discovering attribute relationships.
We then proposed a methodology with which the user can identify attribute rela-
tionships. This information 1s used 1o generate a global atiribute hierarchy. The
second phase of our approach involves aufomatically integrating classes [rom com-
penent schiemas based on a classification algorithin, The fundamental umt of com-
putation in this algorithm is subsumption,

Based on the semantics of the CANDIDE data model, we have been able 1o
dichotomize the schema tegration activity into first reasoning about attributes and
then classes. Reasoning about attributes involves heuristic reasoning (performed
by & human) while reasoning about classes atilizes automatic and formal reasoning.
Reasoning about the relationships between attributes 15 by no means an easy task
and we have discussed that this task cannot be automated. It can however be
made somewhat manageable and structured using the methodology discussed n
the paper. We also discussed why the attribute reasoning should not be hmited by
thelr associations with the classes they belang to in the component schemas.

(Once the attribute hierarchy is generated. most relationships between the classes
cau be automatically determuned and an integrated schema can be generated auto-
matically by merging or assoclating related classes using the process of classification.
Thie inference rules to compute subsurption exploit the attribute relatiouship infor-
mation contained i the attribute hierarchy in a sound manner. They also adliere
to the constraints thiat are captured lu the class definitions. The order m which
a given class is classified is immaterial. The subsumption operator is further used
to define a set of comparison aperators. The user can explowt these coruparison
operators i the final phase of schema reorgamzation, for which a well-defined set
of schema restructuring operators are given.

Tlie main contributions of this paper are:

(1} identifving portions of the schema integration process that can be meanngfully
automated and those portions that are necessarily user-driven.

(2} exploiting the notions of classification and subsumption to provide a vehicle fur
automatic class wtegration,

(3) defining a set of schema comparison and restructuring operators. and

(4) developing an overall schema integration methodology with three phases.
A schema integration toolkit called BERDI based on the approach discussed in

this paper has been implemented and tested at Bellcare {33.39]. The user interface
of BERDI is based on an cxtended E-R model. It supports generation of attribute

48 A, P. Sheth, 5. K. Galu # 5. B. Navathe

hierarchy as described in this paper, which can then be used for automatic class
integration as discussed here, or allernatively used as constraints when the user as-
serts class relationships. For the automatic class integration option, after generating
an attribute hierarchy, the component E-R schernas are semi-automatically trans-
lated into equivalent CANDIDE schemas, integrated as described in this paper, and
translated back into an extended E-R schema.

Au area for further research is to investigate possible learning algorithms which
can help 1 discerning attribute relationships. 1t may also he desirable to decide,
perhaps through an extensive empirical study involving real schiemas, how complete
and how good the integrated schema is at the end of the second phase, and how much
work 1# needed in the third phase. Ve hope that the use of automatic reasoning,
in our case. one based on terminological logies, and our study on where aulomatic
reasonlig is possible and where it 1s not possible {(although limited to the context
of schema integration), will be a step towards devcloping future intelligent and
cooperative information systems.

Acknowledgements

Ve would like to thank Pamela Cham, Howard Marcus, and Ashoka Savasere for
unplementing the schema integration tool at Bellcore. Many interesling discussions
with Ashioka Savasere and Howard Marcus arc also acknowledged. Ramez Elmasr
and James Larson provided helpful comments on the early drafts of the paper.

References

[1) C. Batini and 3. Lenzerini. A methodology [or data schiema integration in the entity
relationship model, TEEE Trans. Seftw. Eng 10, 6 (1984].

[2; C. Batini. Al Lenzerini and §. Navathe, A comparative analysis of methodologies for
database scliema integration. ACM Compul. Sure. 18, 4 [1986) 323-364,

3] H. Beck. A Terminological Knowledge Represcntation Svstem Based on Theories of
Categorization, PP, Thesis, University of Florida, May 1990.

[4] H.W. Beck. S. Gala and 8. B. Navathe, Classification as a query processing technigue
in the CANDIDE semantic data model, in Proc. 3th Int. Conf. on Data Engineering.
l.os Angeles. Feb. 1989,

[3] 1. Biskup aud B. Convent, A formal view integration method, in Froc. ACA SIGMOD
Int. Conf. on Management of Data, Washington D.C., May 1986,

[6] M. Bouzeghoub and I Comyn-Wattiau, View integration by semantic unification and
transformation of data structures, in Proc. 9th Int. E-R Conf., Lausanne, ER Institute,
1940,

[7] R. Brachman and G. Schinolze, An overview of the I{L-ONE knowledge representation
system, Cogn. Sei 9,2 [19853) 171-218.

(87 M. Brodie, On the development of data models, in On Conceptual Modcling,
Eds. M. Brodie, 1. Mylopoulos and Schmidu (Springer Verlag, 1964).

[4] B. Convent, Unsolvable problems related te the view integration approach, in Proc.
Int. Conf. on Database Theory, Rome, Sept. 1986,

[10} B. Czejdo. M. Rusinkiewicz, and 0. Embley, Au approach to schemna integration and
query formulation fu lederated database systems, in Proc. 3rd Int. Conf. on Data
Engineering, Los Angeles. Feb. 1987,

1]
(12]

13]

18]

{14!

[20]

(28]

[30]

On Automabic Reasoning for Schema Integralion 49

J. De Souza, SIS: A Schema Integration System, in Proc. BNCODS Conf., ACM, 1986,
5. Deen. R. Amin, G. Ofori-Dwumfus, and M. Taylor, Data integration in distributed
databases, IEEE Trans. Softw. Eng. 13, 7 (1987).

R. Elmasri, J. Larson and 8. B. Navathe, Schema integration algorithms for federated
databases and logical database design, Technical Report CSC-86-9, Honeywell C5DD,
Minneapolis, MN, Jan. 1986,

W, Effelsberg and M. Mannino, Altribute equivalence in global schema design for
heterogeneous distributed databases, Inf Sysf. 9, 3 & 4 {1884},

R. Bull and K. King, Semantic database modeling: Survey, applications and research
ssues, ACM Comput. Surv. 19, 3 (1987} 201-260.

S. Haves and S. Kam, Multi-user view integration svstem (MUVIS): An expert sys-
tem for view integration. in Proc. 6th Int. Conf, on Date Engineering, Los Angeles,
Feb, 1940,

W Kim, W. Kelley. 5. Gala, and 1. Chol, On resolving schematic heterogeneity in
multidatabase systems, Distributed and Parallel Databases: An International Journal
1.3 (1993}

J. Larson, Bridging the gap between network and relational database management
systems, JEEE Computer 16 (1983} 82-92,

H. Levesque and R. Brachman, A fundamental tradeofl in knowledge representation
and reasoning {revised version), in Readings in Knowledge Representation. Eds, R,).
Brachman and H.], Levesgue {Morgan Kaufmann. Los Altos, TA, 1983).

). Larson, 5. Navathe and R. Elmasti, A theory of attribute equivalence in databases
with applications to schema integration, JEEE Trans. Sofiw. Eng. 15, 4 [1989) 449-
453.

21] A. Motro and P. Buveman, Constructing superviews, in FProc. ACMH SIGMOD Conf.,

Mayv 198},

M. Mannino and W. Effelsberg, Matching technigques 1n global schema design. in Proc.
1st fut. Caonf. on Date Engineering, Los Angeles, April 1984,

§ Navathe, R, Flmasti and J. Larson. Integrating user views in database design, JEEE
Computer, 16,1 (1986] 15-62.

5. Navathe, 5. Gala and 8 Geum. Application of the CANDIDE semantic data model
for federation of information bases {invited paper), m Froc. Conf. on Management of
Data [COMAD 1), Bombay, India, Dec. 1991,

5] B. Nebel, Computational complexity of terminological reasoning in BACK, Artif. 7n-

tell. 34, 3 (1988).

E. Nenhold and M. Schrefl, Global Schema Integration by Tteravive Classification,
Tech. Rep., Dept. of Applied Comp. Sc., Tech. Univ. of Vienna, Sept. 1985,

E. Sciore. M. Sicgal and A. Rosenthal. Context interchange using meta attributes,
i Mroc. ist Int. Conf on [nformation ond Anowledge Munegement, Baltimore,
Nov. 1992,

5. Spaccapietra, C. Parent and Y. Dupont, Automating heterogeneous schoma in-
tegration, Technical Report, Ecole Polvtechnique Federale, Lavsanne, Switzetland,
Apr. 1881,

P. Patel-Schuneider. R. Brachman and II. Levesque, ARGOXN: Kuowledge Representa-
tion Meets Information Retrieval, Fairchild Technical Report 634, FLAIR, 1984,

P. F. Patel-Schneider, Small can be Beantilul in Kuowledge Representation, Technical
Report 37, FLAIR, Oct. 1984,

J. Peckham and J. Maryanski, Semantic data medels, ACM Comput. Surv. 20, 3
(1988) 153-190.

a0

[32]

[33)

[34]

[33]

A. P Sheth, 5. K. Gala & 5. B. Navathe

A. Roscnthal and D. Reiner, Theoretically sound transformations for practical data-
base design. in FProc. fnt. Conf on the Entity-Helationship Approach, New York,
Nov, 1987.

A, Savasere. An Approach to Schema Integration Using Classification, M.5. Thesis,
Department of Computer and Information Sciences, University of Fiorida, Gainesville,
1990,

A Savasere. A. Sheth, 5. Gala, 8. Navathe and H. Marcus, On applving classification
to schema integration, in Proc. fnt. Workshop on Inleroperability in Multidatabase
Systems, Kyoto, Japan, April 1991,

A. Sheth and S. Gala, Attribute relationships: An impediment in automeating schema

integration. in Proc. Workshop on fleterogencous Database Systems, Chicago,
DTec. 1988,

P A. Sheth and V. Kashvap, So far (schematically) vet so near (semantically). in Proc.

D5-7 Conference on Semantics of Interoperalle Database Sysiems, Lorne, Australia,
Wov. 1992,

A. Sheth.). Larson, A. Cornelio and 5. Navathe, A tool for integrating conceptual
schemas and user views. in Proc. 4th Int. Conf. on Data Enginecring, Los Angeles,
Teb. 1988,

A, Sheth and I Larson. Federated databasc svstemns for managing distributed, het-
erogencous, and autonomouns databases, ACM Comput. Sure. 22, 3 {1890} 183-236.
A. Sheth and H. Marcus. Schema Analysis and Integration: Methadology, Techniqgues,
and Protorvpe Toolkit, Technical Memorandum TM-STS-019981/1, Mar. 1992

J. Smith and 1. Smith, Database abstractions: Aggregalion and generalization, ACM
Trans, Database Systems. June (1977) 105-133.

5. Spaccapictra, C. Parent and Y. Dupont, Model independent assertions for integra-
tion of heterogeneous schemas, The VLM Journal 1, 1 (1992) 81-126.

C. Yu, W. 5un. S5 Dac and D. Keirsey, Determining relationships among attributes for
interoperability of multi-database svstems, in Froc. Inf. Workshop on Interoperability
in Mullidatabase Systems. Kvoto, Japan, Apr. 1991,

M. Casanova and M. Vidal, Toward 2 sound integration methodology, in Proc. Znd
ACM SIGMOD/SIGACT Conf. on Principles of Dalabase Systems, Atlanta. GA,
Mar. 1993,

