
The Programmable Web: Agile, Social, and Grassroots Computing

E. Michael Maximilien
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120, USA
maxim@us.ibm.com

Ajith Ranabahu
Wright State University

3640 Colonel Glenn Highway
Dayton, OH 45435, USA

ajith.ranabahu@gmail.com

Abstract

Web services, the Semantic Web, and Web 2.0 are three
somewhat separate movements trying to make the Web a
programmable substrate. While each has achieved some
level of success on its own right, it is becoming appar-
ent that the grassroots approach of the Web 2.0 is gaining
greater success than the other two. In this paper we an-
alyze the movements, briefly describing their main traits,
and outlining their primary assumptions. We then frame the
common problem of achieving a programmable Web within
the context of distributed computing and software engineer-
ing and attempt to show why Web 2.0 is closest to give a
pragmatic solution to the problem and will therefore likely
continue to have the most success while the other two only
have cursory contributions.

1. Introduction

There is wide agreement and efforts toward expanding the
Web into a platform and substrate for distributed comput-
ing. To that end, three separate movements and approaches
have started around the turn of the century.

First, the Web services 1 movement, which is backed by
various members of industry and some from academia. The
effort in this area resulted in a plethora of specifications,
commonly called WS-*, that attempt to create a complete
distributed programming enterprise stack around XML and
the Web. Various industry leaders have invested heavily in
the creation of this architecture and to provide tooling, train-
ing, and solutions centered around Service-Oriented Archi-
tectures (SOAs) and Web services [3]. While this effort is
the most mature and complete, it is arguably the most com-
plicated. This perceived complexity has slowed down its
widespread adoption and deployment.

The second movement, or Semantic Web [2], has its root

1http://www.w3.org/TR/ws-arch

in academia and in particular the field of artificial intelli-
gence. Widely advocated by the W3C and various promi-
nent scholars, the Semantic Web is described to simply add
meaning to the numerous heterogeneous data, services, and
content on the Web via semantic annotations (or metadata).
Since the metadata is created using variants of description
logics, one can create software agents that can use the addi-
tional data about data to infer various interesting properties
of the data and services as well as help facilitate the usage
of the annotated content and services.

Finally, the third movement or Web 2.0 [14], makes
use of Web’s ability to be a social substrate and extend-
ing it to be a social programming substrate. This movement
lead to the creation of various socially-oriented applications
such as MySpace.com, Digg.com, and TechCrunch.com.
These sites share one thing in common, and that is, they
help connect individuals and also facilitate their collabora-
tions. Along with this emerging social Web the facilities
afforded by new programming paradigms (e.g., JavaScript
with AJAX, Ruby with Ruby on Rails, and PHP, and vari-
ous new simpler XML applications for consuming data and
services) are allowing these Web 2.0 applications to be ex-
posed as APIs for remixing or for the creation of novel com-
posite applications, i.e., mashups.

While the three movements have one thing in common:
the Web as a programmable platform, they each took rad-
ically different approaches to how they achieve and evolve
this platform. It maybe too early to declare a clear win-
ner, however, the momentum seems to be with the Web 2.0
movement. In this paper we attempt to provide a critique
of the Web services and Semantic Web efforts and provide
a rational on why current dynamic and agile Web 2.0 pro-
gramming approach has less need for the Web services stan-
dards and for semantics than might appear on the surface.

1.1. Organization

The rest of this paper is organized as follows. Section 2
briefly presents SOA and the Web services architecture



highlighting some of its main flaws and a rational as to why
it has become so complex. Section 3 summarizes some of
the promises of the Semantic Web and also raises some of
the problematic assumptions that it puts forward. In Sec-
tion 4 we give a abbreviated discussion of the problem at
hand: namely transforming the Web as a programming sub-
strate. We then draw a potential solution in Section 5 based
on current Web 2.0 trends but also using evidences from
eminent software engineering principles. Finally, Section 6
finishes with a short conclusion.

2. Web Services and SOA

The first widespread effort to transform the Web into a
programmable substrate for creating and integrating ap-
plications started with the Web services efforts. The ba-
sic architecture started as a simple model of distributed
computing using XML for data modeling and exchange.
Briefly, service providers expose their services described
using WSDL 2 that they publish in registries called UDDI 3,
which are then found by service clients and consumed using
the SOAP 4 protocol.

2.1. WS-*

This basic architecture (without the specific implementa-
tions) is seen as the core of SOAs and calls for granular,
loosely coupled, and XML-based access to business pro-
cesses and data over a network. While simple in its pure
form, the Web services incarnation of SOAs started to ad-
dress non-functional issues (e.g., security, scalability, agree-
ments, policies, transactions, and so on) that would help
make Web services a complete enterprise computing stack.

The WS-* set of standards was created with the primary
objective of having a complete enterprise software stack
that would help solve all of the basic issues experienced in
enterprise software systems. Various proposals addressing
security, reliability, agreements, negotiations, composition,
and so on, made it to the lime light in an effort to help stan-
dardize the stack and avoid its potential fragmentation.

2.2. Sources of Complexity

While the WS-* stack has fundamentally addressed various
aspects to make the Web an enterprise-ready platform, they
have also attracted many criticisms [15]. Some of the de-
scending views centered around the perceived level of com-
plexity when trying to implement and use the proposals.

But what is the source of the complexity in the WS-* pro-
posals? Surely, the creators of these proposals have many

2http://www.w3.org/TR/wsdl
3http://www.uddi.org
4http://www.w3.org/TR/soap

years of experiences building distributed systems and are
highly qualified and must have thought about the beauty of
simplicity vs. the hell that comes with complexity... We be-
lieve the problem is not with the validity of the standards
but rather a scoping problem and lack of foresight.

First, the Web services effort tried to address the en-
tire spectrum of features and guarantees that need to be ad-
dressed by enterprise IT. The intent is to allow architecture
and implementation of enterprise applications (with all or
part-of of common enterprise-ready features) using the new
Web stack. While a noble effort, this leads to a huge ef-
fort with broad scope. The basic SOA architecture required
various heavyweight middleware to get even the simplest
applications implemented.

Finally, the Web is dynamic, evolves constantly, and is
above all an open platform. These fundamental character-
istics have significant impact on the success of proposed
Web standards. In particular, it’s easy to observe that most
successful Web standards (other than the basic ones) tend
to evolve via a darwinian mechanism similar to the open-
source software (OSS) movement [11, 4]. The Web services
effort was slow to adopt these governance practices and in-
stead evolved mostly by committee.

3. The Promise of Semantics

The other planned effort to make the Web a programmable
platform has its roots in artificial intelligence and primarily
the subfields of knowledge representations and description
logics. The Semantic Web and many of its proponents ad-
vocate that a key problem to the evolution of the Web is the
lack of expressed semantics. Since the Web is primarily a
collection of heterogeneous data (or content) and service,
which are also offered, by a no-less heterogeneous set of
agents, there are bound to be inconsistencies and contradic-
tions. The vision of the Semantic Web is that the meaning
of the content and services can be mostly expressed explic-
itly using annotations over common and agreed upon shared
conceptualizations, i.e., ontologies [7].

3.1. Disconnect and Return on Investment

While the Semantic Web has sound foundations, the lack
of widespread adoptions and applications to real-world sce-
narios suggest that it is somewhat disconnected from the re-
alities of the Web. In particular, one of the Web’s strengths
is its inherent heterogeneity and dynamism. These traits
reflect the heterogeneity and dynamism of society and of
the various human cultures in existence. By requiring on-
tologies to enable knowledge sharing and for annotations,
the Semantic Web imposed a heavy burden on designers
and on interoperability since consensus building and pre-
cise knowledge engineering are hard tasks.



Further, even if ontologies were widely available and
used, there is still the pragmatic issue of return on invest-
ment (ROI) for companies (large or small). Building or
reusing an ontology to describe ones content or service has
little bearing on how fast or easy the content or service can
be implemented or maintained. Additionally, there is lit-
tle evidence that taking the time to describe ones service
or content semantically on the Web facilitates integration or
usage. These latter aspects are highly promoted as being
one of the key values to the Semantic Web, however, out-
side of small academic circles and specialized problems and
domains, not much evidence have surfaced

3.2. Problematic Assumptions

One way to understand the Semantic Web’s lack of success
is that it makes a series of problematic assumptions.

First, shared agreed upon conceptualizations are difficult
to achieve and the return on investment is very small. The
ROI won’t get better until others make use of the shared
conceptualizations, in other words until network effects 5

take place.
Secondly, while semantic annotations of content and ser-

vices promise much future rewards, they are difficult to
achieve centrally (sheer size of the job) and lack incentives
for distributed annotation solutions. Indeed, a Web user an-
notation of Web site’s content or service is done primarily
to ease searches and for personal categorization and are id-
iosyncratic. Further, modern search engine’s high accuracy
and recall have also made this task less relevant. A few
Google searches typically yields the Web content or Web
service that a user had in mind.

Finally, Semantic Web technologies were designed to
provide higher levels of abstractions that disconnected them
to the realities of programmers. The disconnect occurs on
two levels:

• First, most Semantic Web technologies (e.g., RDF 6,
OWL 7, SPARQL 8, and so on) are removed from
the programming languages that most Web developers
are used to. They require translations which typically
leads to round-trip engineering and tweaking. This is
akin to model-driven software architecture and devel-
opment [8], which similarly has had difficulties gain-
ing widespread adoptions.

• Second, because Semantic Web technologies require
heavy investments in up-front conceptualizations and
modeling they are not agile [1] in the sense of achiev-
ing quick, malleable, and executable systems that can
be shown in an iterative manner to end-users.

5http://en.wikipedia.org/wiki/Network effect
6http://www.w3.org/RDF
7http://www.w3.org/2004/OWL
8http://www.w3.org/TR/rdf-sparql-query

4. Back to Reality

In many ways, the Semantic Web and Web services have
strayed away from the realities of the Web as we know and
use it today. First, in the case of the Semantic Web, the
call for up-front conceptualizations and agreements are al-
most antithesis to the Web’s success, governance models,
and use. Besides some basic protocols and initial stan-
dards, Web programmers and site designers and developers
are free to create whatever they like, when they like. This
freedom of expression, akin to democratic virtues, seem
to bode well with humans of all races, creeds, and back-
ground. There is something empowering to being able to
contribute content or expose services that can be widely
accessed without first requesting permissions or agreeing
on common terminology. Indeed businesses are thriving
on the Web due to the fact that they can re-implement and
re-engineer their assets and businesses quickly, efficiently,
without any concerns from competitors or the domain that
they belong. They are free to take advantage of the Web as
and when they see fit.

In the case of Web services, the resulting standards,
though well thought out in some aspects, have failed to ad-
dress the basic needs of Web programmers who have to deal
with increased pressures of quick delivery for mostly unsta-
ble requirements. Indeed, the Web has made the need for
agile development methodology and frameworks a primary
concern among Web programmers [12, 13]. The Web ser-
vices standards are difficult to directly program in. They
require various levels of tooling to translate the artifacts of
the specifications to what is manipulated by the underly-
ing programming language, e.g., service descriptions using
WSDLs.

4.1. Framing the Problem

To better attempt to understand the problem of using the
Web as a programmable platform, let’s try to frame the
problem by highlighting the main requirements and facil-
ities that such a platform should offer.

1. Built on Web standards such that there would be no (or
minimal) need to create new Web protocols or stan-
dards. In many ways, this may appear (in hindsight)
an obvious requirement. The Web as we know it know
does a fairly good job at providing a platform for Web
applications that are becoming richer and richer (via
AJAX [9]) and also more interactive. Why should a
programmable layer over it be any different?

2. Ease of programming. This is key in our opinion.
There is no need to introduce additional complexity
to programming Web applications, services, and sys-
tems. Any new frameworks or concepts should blend



into the current toolsets that programmers already have
and are used to. Naturally, this does not mean avoiding
creating new languages or frameworks, but instead it’s
about evolving or improving what is currently avail-
able without requiring the use of new higher-level rep-
resentations that need levels of translations before ex-
ecuting.

3. Facilitate collaboration to accommodate and to take
advantage of the nature and affinity of the Web as a
platform for human social networking. Programmers
and designers also collaborate. The success of the OSS
movement is clear evidence that collaboration is key
to allowing any significant piece of software, architec-
ture, or concept to move beyond niche acceptance to
widespread usage on the open Web.

4. Language and framework agnostic is also an important
characteristic. While some languages (due to their ab-
straction capabilities) will have better affinity to Web
programming or make that process relatively easier,
there is no need to advantage one language over an-
other.

5. Agility is paramount. This means having a platform
which respects and encourages the accepted practices
of agile software development [12]. In particular, there
is no need to encourage big design up-front (as in on-
tologies) since such designs rarely remain valid during
the life of the system. Other important agile principles
to facilitate are enabling short code-test-deploy cycles
and minimize non-executable artifacts.

6. Solution to common distributed programming issues,
that is, attempt to provide a platform that has primi-
tives to address the common issues encountered in dis-
tributed systems, e.g., latency, failures, security, and so
on.

4.2. Issues with Distributed Programming

The fallacies of distributed computing [6], first identified
by Peter Deutsch of Sun Microsystems, are a common set
of false assumptions that are typically made about systems
that have distributed nodes of computations. Nowadays we
typically count eight fallacies:

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology does not change

6. There is one administrator

7. Transport cost is nil

8. The network is homogeneous

The Web already does away with some of these assump-
tions and as a platform it needs to strive to not to make these
assumptions and address the true issues that they pose. Fur-
thermore, the platform should encourage frameworks and
languages that help programmers and designers create sys-
tems that do not make these assumptions and deal with the
issues directly, e.g., asynchronous calls via AJAX to deal
with latency.

5. Social, Grassroots, and Agile Solution

The Web 2.0 movement is the prototype of what is neces-
sary to achieve this programmable Web. The success of this
movement is not only due to the various new social appli-
cations that it enables but also due to the grassroots com-
munity that govern its evolution and to the agile software
engineering approach that it encourages.

5.1. Software Engineering

In many ways, creating a programmable substrate using
the Web amounts to realizing a platform that addresses ba-
sic software engineering principles. Semantics can be use-
ful for conceptualizations and modeling, but at the end of
the day the problem remains a software engineering prob-
lem [10]. The Web 2.0 efforts around using the Web pro-
tocols and URLs to expose business functions as REST [5]
services and data services as Atom 9 or RSS 10 is the real-
ization of this idea in its simplest form.

Furthermore, the platform must also be agile. In particu-
lar it needs to enable rapid creation, test, and deployment of
Web applications and services. Example of this agility can
be seen in the Web 2.0 with the advent of service mashups
that are prototypical examples of rapid compositions and
creations of new applications using a combination of differ-
ent other services.

The agility is also present in how Web modeling are
achieved. Unlike heavyweight approaches that tend to re-
quire big up-front modeling investments, in this platform,
programmers are able to create simple and efficient models
for their data and services as they experiment using them
on the Web, e.g., JSON 11 and YAML 12 for data represen-
tations. There is a very low impedance mismatch between

9http://en.wikipedia.org/wiki/Atom (standard)
10http://en.wikipedia.org/wiki/RSS
11http://www.json.org
12http://www.yaml.org



the models and the executable code. In many ways the mod-
els of the data and semantics of the services are part of the
code that realize the services.

5.2. Social and Grassroots Computing

As shown by the most successful software endeavors on the
Web, such as those of the OSS movement, enabling so-
cial computing is fundamental to making the Web a pro-
grammable platform. Examples of this social and collabo-
rative platform are being realized now with wikis and tag-
ging which allows humans to contribute knowledge and
some level of idiosyncratic semantics (also known as folk-
sonomies) to Web content, resources, and services, e.g.,
Wikipedia.org, Flickr.com, and YouTube.com.

Additional efforts could be in providing example usages
(use cases) for the available services and content. This al-
lows easier reuse of services in mashups but also help create
communities around the services and help foster their evo-
lution.

6. Conclusion

In trying to achieve a programmable Web, it’s important to
recall basic distributed computing concerns, the roots of the
Web, and basic software engineering principles. Like other
distributed systems before it, the basic concerns of latency,
errors, security, and so on, have to be addressed. However,
unlike other systems, the Web’s primary focus has been to
create the connection between the Internet and end-users.
This implies that the Web as a platform should stem from
this human connection first. Web 2.0 has benefited from
tackling this aspect and by focusing on socially connecting
humans.

Additionally, using simple programming paradigms that
take full advantage of the Web’s architecture and with sim-
ple data models, Web 2.0 APIs and mashups are achieving
more success then the thorough, heavy, and complete WS-
* standards. This success has a lot to do with keeping the
service models simple and nimble.

Finally, from a programmable viewpoint the Web 2.0
platform is agile at it’s core. It focuses on creating arti-
facts that are programmable, lightweight, and directly us-
able. Unlike the Semantic Web, there is very low entry point
to using the Web 2.0 artifacts. There is no need for big de-
sign up-front and instead, Web 2.0 is grassroots. Data and
service semantics are understood and communicated using
examples and use cases. This leads to a platform that is
dynamic and agile and programmer friendly.

References

[1] K. Beck and C. Andres. eXtreme Programming Ex-
plained: Embrace Change, 2nd Edition. Addison-
Wesley, Boston, MA, 2005.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Se-
mantic Web. Scientific American, 501(5):28–37, May
2001.

[3] T. Erl. Service-Oriented Architecture : A Field Guide
to Integrating XML and Web Services. Prentice Hall
PTR, Indianapolis, IN, 2004.

[4] J. Feller, B. Fitzgerald, and E. S. Raymond. Un-
derstanding Open Source Software Development.
Addison-Wesley, Boston, MA, 2001.

[5] R. T. Fielding. Software Architectural Styles for
Network-based Applications. Ph.D. thesis, University
of California, Irvine, CA, Jan. 2000.

[6] M. K. Goff. Network Distributed Computing:
Fitscapes and Fallacies. Prentice Hall, Upper Saddle
River, NJ, 2003.

[7] T. R. Gruber. The Role of a Common Ontology
in Achieving Sharable, Reusable Knowledge Bases.
In Proceedings of the Knowledge Representation and
Reasoning Conference, pages 601–602, 1991.

[8] B. Hailpern and P. Tar. Model-driven development:
The good, the bad, and the ugly. IBM Systems Journal,
45(3):451–462, 2006.

[9] M. Mahemoff. AJAX Design Patterns. O’Reilly Me-
dia, Inc., Sebastopol, CA, 2006.

[10] C. Petrie. It’s the Programming, Stupid. IEEE Internet
Computing, 10(4):96, 95, 2006.

[11] E. S. Raymond. The Cathedral & the Bazaar: Mus-
ings on Linux and Open Source by an Accidental Rev-
olutionary. O’Reilly & Associates, Sebastopol, CA,
Feb. 2001.

[12] V. Subramaniam and A. Hunt. Practices of an Agile
Developer. Pragmatic Bookshelf, Raleigh, NC, 2006.

[13] D. Thomas and D. H. Hansson. Agile Web Devel-
opment with Rails. The Pragmatic Programmers,
Raleigh, NC, 2007.

[14] Tim O’Reilly. What is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software.
http://www.oreillynet.com/lpt/a/6228, 2005.

[15] S. Vinoski. WS-Nonexistent Standards. IEEE Internet
Computing, 8(6):94–96, 2004.


