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sers and applications in a multidatabase environment should be provided
‘I with a consistent view of interrelated data, even if the data are managed
by multiple heterogeneous and (semi)autonomous systems. In this arti-
cle, we use the term interdependent data to indicate that mutual consistency
requirements exist between the data stored in separate systems. Manipulation
(including concurrent updates) of the interdependent data must be controlled to
ensure that the mutual consistency of data is preserved.
. . In most applications, the mutual consistency requirements among multiple
By COIISIdeI‘lIlg databases are either ignored or the consistency of data is maintained by the
application programs that perform related updates to all relevant databases.
dependency l—ﬁfwever, th]ijs a;g)pmach haspseveral disadvantapges. First, it relies on the applica-
speciﬁc ations, mutual tion programmers to maintain mutual consistency of data, which is not acceptable
. if the programmers have incomplete knowledge of the integrity constraints to be
ConSIStenCy enforced. Also, a modification of an application may require a change of the
requirements, and actiops to be performg@ to mgimain intfegri.ty and consistency.. Sinc.e integrity
requirements are specified within an application, they are not written in a declar-
Consistency restoration ative way.If we need toidentify these requirements, we must extract them from the
. code, which is a tedious and error-prone task.
teChnlqueS tOgethel‘, we A possible approach to this problem is to enhance existing techniques of
gain better insight into p.reserv.ing integrity in distributed dfllabases.‘. The rpain lin‘1itatio'n of these te.ch-
niques is that they do not capture different dimensions of integrity preservation
maintaining (for example, time constraints) and they assume that the consistency between the
. related data must be restored immediately. However, in loosely coupled environ-
COHSlStenCY Of related ments we may need to temporarily tolerate inconsistencies among related data.
datain a multidatabase Active databases® address this problem by allowing evaluation of time constraints
. in addition to data-value constraints. They use object-oriented techniques to
environment. encapsulate the maintenance of consistency inside the methods.
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Transaction management systems,
based on the traditional transaction con-
cept or its extensions,® can be used to
preserve database consistency. Howev-
er, the specification of these actions
and, hence, the correctness of the mul-
tidatabase updates still rest with the
application programmer, who is respon-
sible for the design of each transaction.

In this article, we address the prob-
lem of interdatabase dependencies and
the effect they have on applications
updating interdependent data. We pro-
pose a model that allows specifications
of constraints among multiple databas-
es in a declarative fashion. The sepa-
ration of the constraints from the ap-
plication programs facilitates the
maintenance of data constraints and
allows flexibility in their implementa-
tion. It also allows investigation of var-
ious mechanisms for enforcing the con-
straints, independently of the application
programs. By grouping the constraints
together, we can check their complete-
ness and discover possible contradic-
tions among them. We also discuss the
concept of polytransactions, which use
interdatabase dependencies to gener-
ate a series of related transactions that
maintain mutual consistency among in-
terrelated databases.

First we introduce our model for spec-
ifying interdatabase dependencies, mu-
tual consistency requirements, and con-
sistency restoration procedures. Then
we give several detailed examples and
discuss how the specifications can be
used to manage interdependent data. In
our conclusion we discuss directions for
further work.

Specification of
interdatabase
dependencies

In this section we introduce the for-
mal specifications of interdatabase de-
pendencies. (However, before we can
specify interdatabase dependencies, we
must eliminate incompatibilities that
may exist among related data items in
different databases. These items may
have different names and be defined
using different data types and/or units.
In this article we do not address the
problem of resolving data incompatibil-
ity.)

Dependencies are specified in a de-
clarative fashion and are viewed as sep-
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arate schema entities. Interdatabase
dependencies should specify not only
the dependency conditions and the con-
sistency requirements that must be sat-
isfied by the related data, but also the
consistency restoration procedures that
must be invoked whenever the consis-
tency requirements are violated. These
problems have been addressed in the
literature separately. Data dependency
conditions are equivalent to integrity
constraints." However, systems that
maintain database integrity usually as-
sume that it must be maintained at all
times. Consistency requirements be-
tween related data that involve timing
constraints have been discussed.* Time
and other factors for mutual consisten-
cy have also been considered.*” Actions
needed to restore consistency between
interdependent data have been studied
extensively in active databases.? In our
opinion, all these components of inter-
database dependencies represent three
facets of a single problem and should be
considered together.

Interdatabase dependency schema.
We use data dependency descriptors (D?)
to specify the interdatabase dependen-
cies. They can be viewed as an exten-
sion of the identity connection proposed
by Wiederhold and Qian.* A data de-
pendency descriptor is a five-tuple:

D*=<S,U,P, C, A>

where S is the set of source data objects
and U is the target data object. Here, Pis
a Boolean-valued interdatabase depen-
dency predicate that defines a relation-
ship between the source and target data
objects, and evaluates to true if this
relationship is satisfied; C is a Boolean-
valued mutual consistency predicate that
specifies consistency requirements and
defines when P must be satisfied; and A
is a collection of consistency restoration
procedures specifying actions that must
be taken to restore consistency and to
ensure that P is satisfied.

The interdatabase dependency de-
scriptor D? is unidirectional from the
set of source objects to the target ob-
ject. A data object cannot be both a
source data object and a target data
object in the same D> The direction of
the D3 is related to the action compo-
nent A. The consistency restoration pro-
cedures can read any object in the set of
source data objects S, but they can up-
date only the target data object U. While

the objects specified in § and U may
belong to the same database, we are
particularly interested in those depen-
dencies in which the objects belong to
different databases. These interdatabase
dependency descriptors can be grouped
together to form an interdatabase de-
pendency schema.

We now discuss a possible specifica-
tion of each component of a D* We use
the relational data model for describing
database objects. To specify the source
and target objects, we use fully quali-
fied names that identify the database
object. In the absence of ambiguity, full
qualification of the database object is
not required. Our choice of specifica-
tion syntax for describing P, C,and A is
guided by the desire to keep them sep-
arate and by pragmatic considerations
to use an expressive and descriptive
syntax. Other choices of models and
languages are possible and may be dic-
tated by the application environment.

Specification of the dependency pred-
icate in a D3, The dependency predicate
P is a Boolean-valued expression spec-
ifying the relationship that should hold
between the data objects in § and U.

Dependency predicates are specified
using operators of relational algebra®®
(selection 6, projectionI1, join D<, union
v, difference —, intersection M, and so
on). Together with the basic operators,
we also use the aggregate operator
and the transitive closure operator o.
The & operator allows specification of
aggregate functions such as sum or count
for the whole relation or for groups
obtained by partitioning the relation
according to the specified attribute. The
o operator computes the transitive clo-
sure of a single relation R, assuming
that the relation is transitive over its
first two attributes. Aggregate and
grouping operators can be used inside
the o operator.

As an example, let’s consider two re-
lations EMP and DEPT_SAL that be-
long to different databases D1 and D2,
respectively. Relation D2.DEPT_SAL
(D#, Avg_sal) contains information
about the average salary of employees
for every department in an organiza-
tion, and relation D1.EMP (E#, Ename,
Sal, D#) contains information about all
employees. Let’s assume that a depen-
dency between these relations requires
that the Avg_sal in each department
must be equal to the average of the
salaries of all employees in that depart-
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ment. This dependency can be expressed
by the following predicate:

P: DEPT_SAL = &, avgsay(EMP)

Specification of mutual consistency
requirements in a D’ In this section we
discuss the specification of mutual con-
sistency of related data objects and clas-
sify its various components.

Multisite transactions that simulta-
neously commit updates at multiple sites
provide immediate consistency® of the
related data. Most of the earlier work
on maintaining consistency among rep-
licated or related data assumed that
immediate consistency of copies must
be provided.” The idea of specifying a
time or a transaction when the consis-
tency of related data must be restored
was introduced by Wiederhold and
Qian.* The identity connection they pro-
posed allows the specification of consis-
tency requirements between replicated
relations, versions of relations, frag-
ments, primary/secondary copies, and
so on. Quasi copies’® are replicas that
may tolerate some controlled inconsis-
tency. They guarantee satisfaction of a
consistency predicate called a coheren-
cy predicate. In both of the above ap-
proaches, the dependency specification
is combined with the definition of con-
sistency requirements that must hold
between related data objects.

In our discussion, we concentrate on
the specification of consistency require-
ments. We classify them along two di-
mensions that are to a large degree or-
thogonal: time and state of data. The
consistency requirement predicate, de-
noted by C, specifies when (in terms of
time and/or data state) the related data
must be consistent. Interdependent ob-
jects may be allowed to be inconsistent
within certain limits determined by C.
The specification of the consistency pred-
icate can involve multiple Boolean-val-
ued conditions that we refer to as con-
sistency terms and denote by c,. Each ¢;
refers to either time or the state of a
data object. Hence, C is a logical ex-
pression involving v, A, or - operators
and consistency terms c;.

Temporal consistency terms. To iden-
tify the point in time at which the relat-
ed data objects must be consistent, we
use DD-MMM-YYYY to specify the
date (day, month, and year) and
hh:mm.ss to denote time (hour, minute,
and second). All time references use
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We classify
consistency requirements
along two dimensions:
time and state of data.

the universal coordinate time. The gran-
ularity of temporal terms may differ
depending on their type. Whenever we
use time consistency terms, we mean
the exact instant of time, but when we
specify a temporal consistency term with
a date, we mean the whole day and not
a particular time during that day.

The time when the consistency of the
interdependent data objects should be
restored may be specified in one of the
following ways:

* At a particular date and/or at a spe-
cific point in time. The on operator is
used with the date, and the @ operator
specifies time. The expression on d
means “on date d,” and the expression
@t translates into “at time ¢.” For exam-
ple, @9:00 means “at9a.m..,” and on 27-
May-1991 means “on May 27, 1991.”

* Before or after a specific instant of
time or date. We use the / operator to
denote predicates of this type and the
operator’s position to distinguish be-
tween before and after. For example, /
8:00 means “before 8 a.m.,” and 25-
Aug-1991 ! means “after August 25,
1991.”

eIn intervals of time and/or dates
using the A operator. For example,
A(9:00-17:00) means “during the whole
interval between9a.m.and 5 p.m.,” and
A(10-Jun-1991@17:00-11-Jun-
1991@8:00) specifies an overnight in-
terval. (Intervals of time can also be
specified by a combination of before
and after operations. For example,
A(9:00-12:00) is equivalent to 9:00 / A !
12:00.)

® Periodically, when a certain amount
of time has elapsed. We can use either
the expression g(period @ t) to specify
“every period of time at time #,” or
€(period on d) to denote a period of
days. A period of time can be specified
using a difference of two times (for ex-
ample, 1, t,); one of the keywords year,

month, day, hour, min, or immediately;
or aduration of time. For example, e(day
@ 12:00) means “every day at noon,”
and g(month on 15) means “on the 15th
day of every month.”

These specifications of a period (time
or date) refer to an absolute time. The
period denotes the maximum elapsed
amount of time. However, there are
cases when we need to specify a period
with reference to the time the consis-
tency was previously restored. We use
the notation €"(period) in this case. For
example, €' (8 hour) means that the con-
sistency must be restored within eight
hours of the previous restoration of con-
sistency. In other words, the values of
related data objects cannot diverge by
more than eight hours.

Data state consistency terms. The data
state requirements determine how far
the related data may diverge (in terms
of data values) since the last time their
consistency was restored. If the diver-
gence exceeds a prespecified limit, mu-
tual consistency must be restored.> These
terms can be specified directly, in terms
of their data values, or indirectly, in
terms of the operations performed on
data.

Consistency terms involving data val-
ues can be specified in the following
ways:

¢ By limiting to a given percentage
the number of data items that can be
changed before the consistency must be
restored. In the earlier example of the
D? involving source relation D1.EMP
andtargetrelation D2. EMP_COPY,we
can specify that whenever more than 10
percent of the records in the source
relation are changed, the relation
EMP_COPY must be made equal to
EMP:

10% (D1.EMP)

* By specifying (or limiting) the max-
imum change in the value of data thatis
allowed before the consistency must be
restored. As an example, let’s consider
relations EMP and DEPT_SAL defined
earlier. We may specify that the
DEPT_SAL relation must be updated
whenever the salary of an employee is
changed by more than 500, using the
following condition:

A EMP.Salary > 500
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where A denotes the change of value.

* By specifying a condition involving
data values or an aggregate function on
the values of source data items. When
this condition is violated, the consisten-
cy must be restored. For example, we
may specify that action must be taken
whenever the average salary of the em-
ployees in the EMP relation is changed
by more than 50, using the following
condition:

A (AVG (EMP.Sal)) > 50

» By specifying the maximum allowed
discrepancy between version numbers
of agiven object that can exist in related
databases. Suppose that a data object is
modified by creating new versions. We
may need to restore data consistency
once the difference between version
numbers exceeds the allowed maximum.
If we assume that relation EMP in data-
base D1 has a copy EMP’ in database
D2, we can specify that EMP’ can lag no
more than five versions behind EMP, as
follows:

5 versions (D1.EMP)

Mutual consistency requirements can
also be related to some operations per-
formed on data objects. Such require-
ments may indicate that consistency
should be restored when a particular
user- or system-defined operation is
performed. These operations can be
applied to the source objects, the target
object, or both source and target ob-
jects.

If the consistency predicate involves
only operations performed on the source
data objects, the corresponding predi-
cate is referred to as a push constraint.
In this case, an operation applied to one
or more source data objects propagates
its effects to the target data object. If
the consistency predicate contains op-
erations that are applied only to the
target object, we refer to the consisten-
cy predicate as a pull constraint. In this
case, the results of (possible) earlier
updates to the source data objects are
propagated to a target data object be-
fore the operation specified in the con-
sistency predicate is performed.

The following types of consistency
terms involving operations can be de-
fined:

e We may allow a certain number of
updates to be performed on a given
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Mutual consistency
requirements can also be
related to some operations
performed on data objects.

source object before the corresponding
changes are made in the target object.
As an example of a push constraint, the
consistency term 10 updates on R, where
R, € §,specifies that after 10 updates on
asource relation R, mutual consistency
must be restored. In a database envi-
ronment, we assume that an update is
performed by insert, delete, and modify
operations. We can also directly specify
the specific update operations (for ex-
ample, 2 delete on R,).

* We can specify that mutual consis-
tency must be restored before an oper-
ation is performed on the target data
object (pull constraint). This can be
specified by the consistency term read
on U. In a database environment, any
query involving the target data object is
aread.

* We can specify (or limit) the num-
ber of operations allowed on the related
data objects before consistency is re-
stored. For example, we can specify no
more than 10 sales transactions before
consistency must be restored, using the
term 10 sales, where sales is the transac-
tion name.

e We can also request the restoration
of mutual consistency before or after a
specific operation is performed. This is
specified by placing the / symbol before
or after the operation. For example,
Icalculate_payroll_checks specifies that
mutual consistency must be restored
before the calculate_payroll_checks
transaction is executed. We can also
enforce consistency after the execution
of an operation or a transaction. In this
case, some other updates may be in-
voked, leading to chained updates (trig-
gers fall into this category). For exam-
ple, take_inventory! specifies that after
the inventory transaction has been com-
pleted, mutual consistency must be re-
stored.

Whenever the consistency predicate

C and the dependency predicate P are
not satisfied, consistency must be re-
stored using the restoration procedures
described next.

Specification of consistency restora-
tion procedures in a D3 The action com-
ponent A of a dependency descriptor is
a set of one or more restoration proce-
dures that can be invoked under certain
conditions to restore mutual consisten-
cy among interdependent data. We as-
sume the existence of a system module,
such as a manager of interdependent
data’ or a multidatabase monitor,'° that
tracks and controls the updates of all
databases. Using the current value of
each c,, the monitor can calculate the
value of the consistency predicate C.

The action component A specifies
conditional execution of one or more
consistency restoration procedures.
Conditions in A, denoted by Cy (for
restoration condition), can be, but need
not be, the same as conditions in C. C
is a logical expression involving v, A, or
—operators and the consistency terms.

The syntax of the A component al-
lows the specification of either single or
multiple consistency restoration proce-
dures. A with a single consistency resto-
ration procedure is specified as

A: procedure name [as execution
mode]

Since there may be several ways to re-
store consistency, more than one con-
sistency restoration procedure can be
specified in the action component A, if
needed. Depending on the restoration
conditions, an appropriate consistency
restoration routine will be invoked. In
this case, we use the following notation:

when C; do procedure name [as exe-
cution mode]

when C; do procedure name [as exe-
cution mode]

otherwise default procedure name [as
execution mode]

The descriptor D3 specifies the name
of the procedure to be invoked by the
multidatabase monitor, and optionally
the mode in which it wiil run. The mode
identifies the relationship between the
restoration pfocedure (child) and the
transaction that invoked it (parent). If
the database consistency has been vio-
lated as a direct consequence of an up-
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date operation performed on a source
data object o € S, the monitor may need
to link the consistency restoration pro-
cedures to the update that caused the
violation. In this case, various degrees
of coupling of the invoked consistency
restoration procedures with the origi-
nal (parent) update can be defined. Par-
ent and child transactions can be cou-
pled if the parent must wait for the
restoration procedure to complete, or
decoupled when the parent can proceed
immediately. Furthermore, a coupled
transaction can be vital, in which case
the parent must fail if the child fails, or
nonvital,in which case the parent can be
allowed to continue even if the child
transaction fails.!

This classification is not exhaustive,
and other relationships between parent
and child may be possible. Execution of
the restoration procedures is discussed
in a later section on using the depen-
dency schema.

Examples of
interdatabase
dependencies

In this section we present examples
of interdatabase dependencies. We il-
lustrate the concepts introduced above,
using the multidatabase environment
as an example. Let’s suppose that we
have the following relation schemas:

EMP (E#, Ename, Sal, D#)
DEPT_SAL (D#, Avg_sal)
MGR (E#, Mgrname, Dname)

Database D1 contains relations EMP
and MGR. The EMP relation is aiso
horizontally fragmented in branch da-
tabases Da, Db, and Dc, with fragment
names EMP_a, EMP_b, and EMP_c,
respectively. Additionally, database D3
contains a replica of EMP named
EMP_COPY.Finally,database D2 con-
tains relation DEPT_SAL.

Replicated data. In the case of repli-
cated data, identical copies of data are
stored in two or more databases. The
dependency between all copies requires
that changes performed to any copy be
reflected in other copies, possibly with-
in some predefined time. Let’s con-
sider the relation D1.EMP and its rep-
lica D3.EMP_COPY. If we assume that
EMP must always be up to date, but we
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With replicated data,
the dependency
between all copies
requires that changes to
any copy be reflected in
other copies.

can tolerate inconsistencies in the
EMP_COPY relation for no more than
one day, we use the following pair of
dependency descriptors:

$ : D1.LEMP

: D3.EMP_COPY

: EMP = EMP_COPY

: g(day)

: Duplicate_EMP
(The EMP relation is copied to
EMP_COPY.)

> 0TS

: D3.EMP_COPY

: D1.EMP

: EMP = EMP_COPY

: 1 update on §

: Propagate_Update_To_EMP as

coupled & vital

(The update to EMP_COPY is
repeated on EMP.)

e T Halle)

In the previous two descriptors, the
consistency predicate P is exactly the
same. The target object in one descrip-
tor is the source object in the other
descriptor. This is a case of a bidirec-
tional dependency between two data-
base objects. Whenever an update is
performed on the EMP_COPY, this
update must be reflected immediately
in the EMP relation. Consistency, how-
ever, will be restored inthe EMP_COPY
only at the end of the day (although
there may be a number of updates per-
formed to the EMP during that day).

Existential constraints. Let’s consid-
er an example of referential integrity,
which is an example of an existential
constraint. Using the above-mentioned
EMP and DEPT_SALrelations, we want
to specify that every employee’s de-
partment (D#) has an entry in
DEPT_SAL:

S : D1.LEMP
U: D2.DEPT_SAL

P: My (EMP) c I1,(DEPT_SAL)
C: immediately
A: Notify_user

A comprehensive example. To see
how aninterdatabase dependency sche-
ma works, let’s consider a collection of
telecommunication databases used by a
hypothetical telecommunication appli-
cation for planning new services. We
assume that DB1 contains information
about a switch and its contents (for ex-
ample, what each of its slots contains).
A switch is an electronic device that
identifies the dialed number and estab-
lishes a connection. We assume that
every switch has a fixed number of slots
and that each of them can be either
available for use or not available (allo-
cated to some equipment). We need to
keep track of what equipment is in-
stalled in each of the used slots.

We assume that the information about
the switch and its contents is stored in
the following relations:

SWITCH (CLLI, InService, OutService,
SwitchType) (CLLI is a unique key)
SLOTS (CLLI, Slot#, Version, Device-

Type)

Let DB2 contain summary informa-
tion about the equipment currently at-
tached to all switches. We assume that
DB?2 is a statistical database that does
not need to be fully up to date. This
information is stored in the relation

DEVICE_SUMMARY (DeviceType,
TotalNumberUsed)

Also, let DB3 be an operational data-
base containing status information about
each switch. This can be represented by
the relation

SWITCH_STATUS (CLLI, Type, Ca-
pacity, NumberSlotsUsed, Number-
SlotsReserved)

Finally, let DB4 contain planning infor-
mation about the switches whose capac-
ities are close to being exhausted. This
information is stored in the relation

EXHAUSTED_SWITCHES(CLLI,
NumberSlotsLeft)

The above databases may very well
be used by different applications in an
organization. These applications can
contain programs that access the differ-
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ent databases to manipulate their data
using transactions. The transactions will
transform the databases from one state
into another, preserving database con-
sistency requirements as defined in each
database. Below, we describe interda-
tabase dependencies that can be de-
fined in this environment.

Every time an update is submitted to
the SLOTS relation in DB1, we must
reflect this change in the DE-
VICE_SUMMARY relation in DB2,
although not necessarily immediately.
The corresponding interdatabase depen-
dency descriptor may look as follows:

S : DB1.SLOTS
U: DB2.DEVICE_SUMMARY

P: E.»DcviccType.coum(') (SLOTS) =
DEVICE_SUMMARY
C: ¢, A c, where
¢;: count(write on S) > 10;
¢,: e(month)
A: Slots_to_DeviceSummary as de-
coupled

Whenever the information about a slot
is changed in DB1.SLOTS (for exam-
ple, equipment is inserted in a slot), the
DB3 database that contains informa-
tion about the status of the switches
must be immediately updated. This is
specified by the following D*

S : DB1.SLOTS

U: DB3.SWITCH_STATUS

P&l icomSWITCH_STATUS =
Eeoun(ry SWITCH_STATUS

C: immediately

A: Slots_to_Switch_Status ascoupled
& vital

Managing
interdependent data

In this section we propose a possible
system architecture that can be used to
maintain interdependent data objects
in a multidatabase environment. We
assume that an interdatabase depen-
dency system is associated with every
database participating in a multidata-
base environment and acts as an inter-
face between different databases. De-
pendency systems at different sites can
communicate with each other. When-
ever a transaction is submitted for exe-
cution, the dependency system will con-
sult the interdatabase dependency

December 1991

We propose a possible
system architecture that
can be used to maintain

interdependent data objects
in a multidatabase
environment.

schema (IDS) to determine whether the
data accessed by the transaction are
dependent on data in other databases.
The dependency schema can be either
centralized or distributed over the local
sites.

If a transaction updates data in a da-
tabase that are related to data in other
databases, a series of related transac-
tions may be scheduled for execution to
maintain mutual consistency of related
data. The related transactions corre-
spond torestoration procedures and are
submitted to the database management
systems that manage the corresponding
related data. After execution of a resto-
ration procedure, the values of the af-
fected consistency terms c, are reinitial-
ized.

Generating polytransactions from
dependency descriptors. The execution
plan resulting from an initial access of a
data object interdependent with other
data objects consists of a number of
transactions that are submitted for exe-
cution to the local and/or remote sys-
tems. These transactions are created
because of the existence of interdata-
base dependencies. The transactions can
be grouped together in a tree form called
a polytransaction.

A polytransaction (T*) is a “transi-
tive closure” of a transaction T submit-
ted to an interdependent data manage-
ment system. The transitive closure is
computed with respect to the IDS.

A polytransaction can be represent-
ed by a tree in which the nodes corre-
spond toits component transactions and
the edges define the “coupling” (as de-
fined by the execution mode in the cor-
responding restoration procedure) be-
tween the parent and child transactions.
Given a transaction T, the tree repre-
senting its polytransaction T* can be
determined as follows. We examine all
data dependency descriptors in the IDS

such that the data item updated by T is
among the source objects of the D If
this update causes a violation of the
consistency requirements, we create a
new node corresponding to a (system-
generated) new transaction T’ to up-
date the target object of the D> T’ cor-
responds to the action component of
the D? (restoration procedure) that must
be invoked. These actions correspond
to push constraints specified in the IDS.
Similarly, we examine all dependency
descriptors,such that the dataitemread
by T is the target of the D* If a pull
constraint involving this data item ex-
ists, a new transaction T” is generated to
update the affected data item, and a
corresponding new node is created in
the tree. This process is applied recur-
sively to T” and T” until the consistency
of the system is restored to the degree
specified in the IDS.

Strategy for executing polytransac-
tions. Two approaches to control the
execution of multidatabase transactions
have been discussed in the literature.
Under the first approach, the multida-
tabase system controls the scheduling
of all subtransactions of a transaction."
A disadvantage of this approach is that
the set of all subtransactions and the
precedence dependencies between them
must be known in advance. The second
approach is used in active databases
and uses triggers to asynchronously
schedule subtransactions on the basis of
some events, usually in a decoupled fash-
ion.>!? This approach involves specifi-
cation of triggers and is event driven.

In the model we discuss in this article,
the polytransaction activities are based
on the information in the multidatabase
schema and the database states. This
approach allows the transaction sched-
ule to be determined dynamically on
the basis of the information stored de-
claratively in the IDS. Unlike triggers
that use only event-driveninvocation of
actions, our approach allows actions to
be performed on the basis of either the
state of the data or external events.

Now consider the comprehensive ex-
ample presented earlier. Let’s suppose
that transaction T1 submitted to DB1
modifies the status of one of the slotsin
the switch as a result of adding a piece of
equipment to the switch. Let’s suppose
that the interdatabase dependency spec-
ifies that database DB2 should be even-
tually updated to reflect the changes in
the switches. Hence, transaction T2 will
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be scheduled to make required
changes in DB2. Note that be-
cause of the eventual consistency
requirements, T2 can be sched-
uled as a decoupled transaction,
asshownin Figure 1. Let’s further
suppose that DB3 must be updat-
ed immediately to reflect the
change in the status of the switch.
Therefore, a transaction T3 must
be scheduled. Because of the im-
mediate consistency requirement,
T3 should be a coupled transac-

Legend: \
Coupled and vital

- = = = Coupled and nonvital \
------- Decoupled
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maintenance of integrity and con-
sistency of interdependent data in mul-
tiple databases. We proposed a declar-
ative specification of interdatabase
dependencies using dependency de-
scriptors that together constitute the
interdatabase dependency schema.
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The model of interdatabase depen-
dencies proposed in this article can pro-
vide a framework for the discussion of
issues related to the management of the
interdependent data. However, a num-
ber of additional issues must be ad-
dressed. The following are currently
under investigation:

I n this article, we discussed some
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¢ Specification of allinterdependen-
¢y requirements within an IDS facili-
tates checking of semantic correctness
of the specification. However, the def-
inition of correctness criteria and the
methods to determine whether a given
specification satisfies them have to be
developed.

* Although our specifications include
more types of interdependencies (with
a relatively clean taxonomy provided
by three components of the D?), the
notion of completeness of a specifica-
tion needs to be investigated. In this
article, we adopted a pragmatic ap-
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the requirements of real and existing
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* We need to develop applications
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particular, we are investigating the
use of the IDS to automatically gen-
erate polytransactions as a result of
an initial update of a source data
object. B
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