
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/312123307

Torpedo:	Improving	the	State-of-the-Art	RDF
Dataset	Slicing

Conference	Paper	·	March	2017

CITATIONS

0

READS

116

11	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Knowledge	Box	(KBox)	View	project

DeFacto	View	project

Albert	Weichselbraun

Hochschule	für	Technik	und	Wirtschaft	in	Chur

87	PUBLICATIONS			531	CITATIONS			

SEE	PROFILE

Jens	Lehmann

University	of	Bonn

154	PUBLICATIONS			4,833	CITATIONS			

SEE	PROFILE

Sören	Auer

University	of	Bonn

318	PUBLICATIONS			5,891	CITATIONS			

SEE	PROFILE

Adrian	M.P.	Brasoveanu

MODUL	University	Vienna

15	PUBLICATIONS			38	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Muhammad	Saleem	on	07	January	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/312123307_Torpedo_Improving_the_State-of-the-Art_RDF_Dataset_Slicing?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/312123307_Torpedo_Improving_the_State-of-the-Art_RDF_Dataset_Slicing?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Box-KBox?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/DeFacto?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Albert_Weichselbraun?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Albert_Weichselbraun?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hochschule_fuer_Technik_und_Wirtschaft_in_Chur?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Albert_Weichselbraun?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens_Lehmann2?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens_Lehmann2?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bonn?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens_Lehmann2?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soeren_Auer?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soeren_Auer?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bonn?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soeren_Auer?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adrian_Brasoveanu?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adrian_Brasoveanu?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/MODUL_University_Vienna?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adrian_Brasoveanu?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Saleem31?enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Torpedo: Improving the State-of-the-Art
RDF Dataset Slicing

Edgard Marx∗, Saeedeh Shekarpour∗§, Tommaso Soru∗, Adrian M.P. Braşoveanu†, Muhammad Saleem∗,
Ciro Baron∗, Albert Weichselbraun‡, Jens Lehmann∗, Axel-Cyrille Ngonga Ngomo∗, and Sören Auer∗¶

∗AKSW, University of Leipzig, Germany
{marx,shekarpour,tsoru,saleem,cbaron,lehmann,ngonga}@informatik.uni-leipzig.de

http://aksw.org
†MODUL University Vienna, Vienna, Austria, adrian.brasoveanu@modul.ac.at

‡SII, University of Applied Sciences, Chur, Switzerland, albert.weichselbraun@htwchur.ch
§Knoesis Research Center, USA
¶EIS, University of Bonn, Germany

Abstract—Over the last years, the amount of data published as
Linked Data on the Web has grown enormously. In spite of the
high availability of Linked Data, organizations still encounter an
accessibility challenge while consuming it. This is mostly due to
the large size of some of the datasets published as Linked Data.
The core observation behind this work is that a subset of these
datasets suffices to address the needs of most organizations. In
this paper, we introduce Torpedo, an approach for efficiently
selecting and extracting relevant subsets from RDF datasets.
In particular, Torpedo adds optimization techniques to reduce
seek operations costs as well as the support of multi-join graph
patterns and SPARQL FILTERs that enable to perform a more
granular data selection. We compare the performance of our
approach with existing solutions on nine different queries against
four datasets. Our results show that our approach is highly
scalable and is up to 26% faster than the current state-of-the-art
RDF dataset slicing approach.

I. INTRODUCTION

Over the last years, the amount of structured data which
has been published on the Web as Linked Open Data (LOD)
has grown enormously. Currently, it comprises approximately
150 billion triples from approximately 10,000 datasets.1 In
spite of the high availability of data, organizations still en-
counter an accessibility challenge while consuming Linked
Open Data. RDF datasets are mostly accessible via either
SPARQL endpoints or RDF data dumps. The experimental
study in [2] (in which 427 public endpoints were examined)
revealed that around only one-third of the public endpoints
have an availability rate of more than 99%. Therefore, public
endpoints are not a reliable option for accessing RDF data.
Another option, i.e., using dumps of LOD datasets is also prob-
lematic. Since many of the LOD datasets are very large, both
loading and querying them via a triple store is extremely time-
consuming and resource-demanding. For example, DBpedia2

and LinkedGeoData3 encompass more than 1 billion triples
each. The loading time amounts to approximately 8 hours for

1Data gathered on July 17th, 2016; http://stats.lod2.eu/.
2Version 2015 can be found at http://dbpedia.org.
3Version of January, 2016; http://linkedgeodata.org.

DBpedia and 100 hours for LinkedGeoData on state-of-the-art
server hardware and triple stores.

The main observation of this work is that commonly, orga-
nizations, as well as ordinary users, may not be interested
in an entire dataset; in many cases, they rather require a
very specific fragment of these datasets. For instance, for a
consumer with an interest in entertainment topics, a fragment
of DBpedia containing facts about, e.g., movies (class Film,
71,715 instances) and actors (class Actor, 2,431 instances)
is sufficient. Overall, these classes account for less than 3% of
the resources in DBpedia. Another example is providing users
with points-of-interest information from the LinkedGeoData
dataset starting from the users’ location. In this case, we
can omit all nodes and relations which are not of the type
Point_of_interest or any of its sub-classes; thus, 98%
of triples in the knowledge base can be purged. In both
scenarios, only a small fraction of the underlying knowledge
base is sufficient for a particular use case. The intuition behind
dataset slicing is that extracting the relevant fragments of large
datasets in place is more efficient than downloading, index-
ing and extracting the same fragment via SPARQL queries
issued against triple stores. Although there are many existing
approaches for Linked Streaming Data (LSD) (CQELS [13],
Streaming SPARQL [5], C-SPARQL [3], SPARQL stream [6]
and EP-SPARQL [1]), all of them are designed for contin-
uous data streaming with high change rate, e.g., once per
second. RDF dataset slice does not address the problem of
continuous data streaming. Rather, it focuses on extracting
relevant fragments from large files in the distributed static
RDF-based LOD. Naturally, this significantly increases query
performance since irrelevant but potentially very large parts of
a dataset are discarded. As the extracted slices include only
the required amount of information, closed-domain Semantic
Web applications (i.e., applications with a specific topic) can
perform more efficiently.

The previously introduced concept of RDF dataset
slice [14], [15] focuses particularly on both the selection
and extraction steps of the Linked Open Data consumption
process. These steps are essential to reduce space and time

http://stats.lod2.eu/
http://dbpedia.org
http://linkedgeodata.org
https://www.researchgate.net/publication/220854335_Streaming_SPARQL_-_Extending_SPARQL_to_Process_Data_Streams?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221024038_EP-SPARQL_A_unified_language_for_event_processing_and_stream_reasoning?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/267705830_Enabling_Ontology-Based_Access_to_Streaming_Data_Sources?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==

complexity in the whole process since the retrieved fragment
is a subset (i.e., a slice) of the original dataset. In this paper,
we propose a new approach for slicing RDF datasets called
Torpedo. It consists into devising the fragment of SPARQL
dubbed eSliceSPARQL, which enables a more granular selec-
tion of slices of datasets fulfilling typical information needs.
eSliceSPARQL is an extension of the previous introduced
SliceSPARQL [14], [15] and supports multi-join graph pat-
terns for which each connected sub-graph pattern involves a
maximum of one variable or IRI in its join conditions. This
restriction guarantees the efficient processing of the query
against a sequential dataset dump stream. As a result, Torpedo
can perform a more granular data selection than the previous
introduced RDF dataset slice methods [14], [15]. Our main
contributions are as follows:
• We extend previous introduced SliceSPARQL opera-

tor [14], [15] to the eSliceSPARQL, which supports multi-
join type queries and SPARQL FILTER operator.

• We introduce an optimization approach for reducing RDF
dataset slice disk seek operations.

• We compare SliceSPARQL with eSliceSPARQL in an
extensive evaluation using DBpedia 20144 and show that
it is around 26% faster than previous introduced RDF
dataset slicing methods [14], [15].

• We compare Torpedo with different RDF data streaming
approaches and show that it is faster and more scalable.

The rest of this paper is organized as follows. Section III
presents our novel RDF slice approach. Section IV presents
a comprehensive evaluation of our approach with the state-
of-the-art with a focus on runtime performance. Section V
given an overview of related works. Finally, we close with the
conclusion in Section VI.

II. BACKGROUND

RDF dataset slicing approaches are designed to extract
portions of a given set of RDF streams that abide by a
description provided in a restricted SPARQL vocabulary which
we call SliceSPARQL [14], [15]. It works in a stream fashion,
matching triple patterns of SliceSPARQL queries sequentially
against the data processed from the dataset dump file.

1 ? s1 a dbo : Drug .
2 ? s1 owl : sameAs ? o1 .

Listing 1. An example of an SliceSPARQL query using subject (?s1). The
triple in line 1 shares one variable (?s1) with triple in line 2.

The process of dataset slicing comprises three stages [14],
[15]. In the first stage, the most restrictive triple pattern is
extracted from the SliceSPARQL query and used to extract the
matching join-candidates from the dataset. The SliceSPARQL
is closed by Marx et al. [14], [15] as follows:

Definition 1 (SliceSPARQL): SliceSPARQL is the fragment
of SPARQL for which each connected subgraph pattern of the
SPARQL graph pattern involves a maximum of one variable
or IRI in its join conditions.

The most restrictive triple pattern is the one that contains
more constants (i.e ?s1 a dbo:Drug . in Listing 1). The

4http://wiki.dbpedia.org/

most restrictive triple pattern is closed by Marx et al. [14],
[15] as follows:

Definition 2 (Most Restrictive Triple Pattern): For a given
triple pattern t, the number of constants contained in t is
denoted by tc. The set of the most restrictive triple patterns of
a SliceSPARQL query Tr is the set of triple patterns having
maximum tc.

In the second stage, SliceSPARQL process the datasets
again in order to verify which of the join candidates match the
remaining triple patterns of the BGP (i.e. ?s1 owl:sameAs
?o1 . in Listing 1). The join candidates is formally closed
by Marx et al. [14], [15] as follows:

Definition 3 (Set of join candidates): A graph pattern p
matching the triple t is denoted by p(t). Consider all maxi-
mally connected subgraph patterns P of a SliceSPARQL query
with respect to the join position. For a given graph pattern
p ∈ P , the set of the join candidates is the set of all RDF
terms in the join position of triples matching p. This set is
denoted by Cp and formally is defined as:

Cp = {RDFTerm(t)|t ∈ D ∧ p(t) ∧ p ∈ P}

Considering the set of all patterns P , the set of join candidate
C is the intersection of all Cp.

C =
⋂
∀p∈P

Cp

The third and final stage consist in selecting all triples
containing an RDF term which matches all patterns in SliceS-
PARQL.

Please refer to previous works [14], [15] for a more ex-
tensive discussion and formalization of RDF dataset slicing
approach as well as all possible join types and their respective
time complexity.

III. APPROACH

In this work, we extend the SliceSPARQL to eSliceSPARQL
by adding support for SPARQL FILTERs and multi-join
graph patterns. We also optimize disk seek operations by
adding an in-memory layer. As shown in [14], [15], the type
of joins in graph patterns consisting of two triple patterns can
be classified into six categories. The eSliceSPARQL operator
is introduced below.

Definition 4 (eSliceSPARQL): eSliceSPARQL is the frag-
ment of SPARQL for which each pair of connected triple
patterns shares at most of one variable or IRI with another
triple pattern (Listing 2).

Notice that, different from SliceSPARQL that deal with a
single variable–e.g. ?s1 in Listing 1, the operator eSliceS-
PARQL can deal with more than one variable (?s4 and ?04
in Listing 2) in the BGP join condition.

1 ? s4 a dbo : Drug .
2 ? s4 owl : sameAs ? o4 .
3 ? o4 ? p5 ? o5 .

Listing 2. Listing a multi-join BGP of Query 9.

http://wiki.dbpedia.org/
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==

A. Supporting SPARQL FILTERs

Providing good filter methods is important in order to
support good dataset slice granularity. The state-of-the-art
approch for RDF dataset slicing [14], [15] do not support
the use of SPARQL FILTERs, which imposes several limita-
tions. The proposed approach (Torpedo) is capable to evaluate
the SPARQL FILTER as a simple or composed Boolean
function,5 when the evaluated function in the SPARQL
FILTER involves a constant. Simple constant filters can be
translated to triple patterns, i.e., the simple BGP ‘?s ?p
?o. Filter(?s = <dbpedia:Ayton_Senna>)’ can
be simplified to ‘<dbpedia:Ayton_Senna> ?p ?o.’.
On the other hand, variables can lead to a significant increase
of candidates. For example, the selection of everyone that was
born and died in a different place.

1 ? s dbo : b o r n P l a c e ? b o r n P l a c e .
2 ? s dbo : d e a t h P l a c e ? d e a t h P l a c e .
3 FILTER (? b o r n P l a c e != ? d e a t h P l a c e)

Listing 3. Listing a Filter using variables as restriction.

Another possibility is to apply the full SPARQL FILTER
in Subject-Segmented data. However, this approach is only
possible if the restrict conditions in the filter apply to the same
subject. For instance, the SPARQL FILTER of the previous
examples.

B. Slicing with Multi-join type Queries

As noticed by previous works [14], [15], the use of multi-
join types query is not common. However, there are some
queries that make use of multi-join BGP for data extraction.
That is the case for the extraction of owl:sameAs data from
a particular Graph Pattern (GP). For instance, the following
BGP Listing 2 is taken from the Query 9 in Table III. Notice
that the mentioned BGP in Listing 2 has a multi-join pattern,
that is, the variable used in the join between lines one
and two is different from the variable in the join between
lines two and three. Our proposed approach (Torpedo) supports
multi-join type queries as the simple join queries, which
means at first evaluating the most restrictive triple pattern. In
order to perform that, BGP containing multi-join type queries
are divided in sub-BGPs. The sub-BGPs are slices from the
SPARQL query where the GP contains a single variable in
the join condition. For instance, the introduced BGP in Query
9 Table III is divided into two BGPs, one containing the
subject with variable ?s4 (Listing 4) and the other containing
the subject-object join with variable ?o4 (Listing 5).

1 ? s4 a dbo : Drug .
2 ? s4 owl : sameAs ? o4 .

Listing 4. Listing the sub-BGP SS of Query 9

1 ? s4 owl : sameAs ? o4 .
2 ? o4 ? p5 ? o5 .

Listing 5. Listing a sub-BGP SO of Query 9

5http://www.w3.org/TR/sparql11-query/#evaluation

In this example, the most restrictive triple pattern is found
in the first slice (Listing 4) (?s4 a dbo:Drug.). However,
when a triple matches the most restrictive triple pattern, it
is used to generate a candidate match for the most restrictive
triple pattern of the sub-BGP. Thus, a match in the most restric-
tive triple pattern in the given example generates a candidate
for the most restrictive triple patterns in its subgraph patterns.
That is, in the previous example, if the triple dbr:Aspirin
a dbo:Drug is a candidate for the most restrictive triple
pattern, it will generate the candidate dbr:Aspirin a
dbo:Drug for Listing 4 and dbr:Aspirin owl:sameAs
?o4 for Listing 5. Finally, the evaluation of the multi-join
BGP is given by applying a logical AND between all its sub-
BGPs. Unfortunately, there are limitations in the described
approach. The most restrictive triple pattern is used to eval-
uate the candidates in all sub-BGPs. Thus, all sub-BGPs are
forced to share at least one variable or constant with it. For
instance, in the given example above, the variable ?s4 of the
most restrictive triple pattern (?s4 a dbo:Drug) is shared
between all sub-BGPs (see Listing 4 and Listing 5).

C. Complexity analysis
In this sections we extend the previous discussed complexity

analysis of RDF dataset slice extraction process [14], [15] to
SPARQL FILTERs and multi-join type queries.

Theorem 1: The complexity of extraction using filter or
multi-join type queries is O(n log n).

Case 1: The complexity of extraction using filter is
O(n log n).

The extraction can be performed by evaluating the triples
that match the SPARQL FILTERs. Since filters use constants
(see Section III-A), in the worst case, the selection can be
performed in three passes by using the generic method. First
pass evaluates the most restrictive triple pattern. Second pass
evaluates if the triple patterns fulfill the assigned BGP filters,
i.e. it evaluates the logical AND of each individual SPARQL
FILTER F in the BGP (F1∧F2∧Fn). The third pass performs
the selection. As previously discussed, the generic method can
be performed in O(n log n).

Case 2: The complexity of extraction using multi-join type
queries is O(n log n).

The extraction of a join can be performed by evaluating the
triples that match each of the sub graph patterns (see Section
III-B). Since the evaluation of the sub graph patterns can be
performed in the worst case in O(n log n), the complexity
of extracting a slice from a multi-join type query can be
executed in Θ(subGP ∗ nlogn) where subGP is the number
of sub graph patterns in a query. As the number of sub graph
patterns tends to be inferior to five [14], [15], subGP can be
evaluated as a constant, therefore subGP << n. Furthermore,
as discussed before, one pass (nlogn) is enough to evaluate all
triple patterns in a BGP. Thus, the complexity of evaluating a
multi-join type query in practice is O(n log n).

D. Optimizing Disk Seek Operations
Read and write operations can be very costly, especially

when carried out on disk (e.g., memory access can be more

Fig. 1. In this example, the self-configured in-memory layer detects an
availability of 4 GB on a machine. In the diagram, one step corresponds to
the amount of time needed to store 1 GB of data. After the fourth step, data
is stored in-disk.

In-Disk

In-Memory

U
R

I

Streaming data types

Persistence layers

Stream Reader/Writer

Persistence

Filter Plan

Filter Parser

Filter Executor

Filter Engine

O
th

er
s

C
o

m
p

re
ss

ed

RDF Data Standard Formats

Fig. 2. Torpedo Engine Architecture.

than 105 times faster than disk access [12]). However, memory
is a scarce resource that may simply not be available for
storing a large volume of data. In order to further optimize
the RDF stream execution, we provide a transparent two-
layer persistent system. With the use of the transparent layer,
the data flow is directed to the fast in-memory layer first.
When the volatile layer reaches its limit, the data flow is
automatically directed to the slow in-disk layer. The data
access is done in the same fashion of the persistence; that
is, if the desired information is not found in the in-memory,
then it is sought in the in-disk persistent layer. Moreover, the
in-memory seek operation is optimized using a hash index. All
information persisted on the in-memory layer is converted to
a perfect hash key that helps to uniquely identify it, avoiding
collisions. Thus, in-memory entries can be accessed efficiently.
To allow the RDF engine to be used in a wide range of
different scenarios, we ensure that the in-memory layer is
self-configuring. When the application starts, it automatically
detects how much memory is available for its execution.
Smartly, a concise portion (70%) of the available memory is
allocated to the in-memory persistent layer.

E. Architecture

The architecture of RDFSlice is depicted in Figure 2; it
consists of three main components. (1) The Stream Reader
component is responsible for reading stream data which can
flow from different sources. Approaches for publishing Linked
Open Data may be as diverse as data dumps, data streams, and

SPARQL endpoints. The data formats can also be disparate.
Torpedo Stream Reader is built upon the OpenRDF API,6

which is capable of supporting all mainstream RDF formats
such as RDF/XML, Turtle, N-Triples, N-Quads, JSON-LD,
TriG and TriX. However, the optimized selection of BGPs
containing SO and SS in sorted files is only available for
N-Triple format [14], [15]. It is also possible to deal with
different streaming data types, which allow to query large data
dumps, as well as continuous streaming data flows. Neverthe-
less, differently from Linked Streaming Data approaches, RDF
slice approaches does not implement time windows. Thus, it is
designed to query only for Subject-Segmented or sorted data
streaming [14], [15]. Another important feature of the Stream
Reader module is the ability to reestablish the data streaming
from the point where it was interrupted, available only for
remote data dump slicing. (2) The Query Engine executes the
parser of the Filter clause and selects the relevant triples from
the incoming data stream. The Query Engine has tree modules:
(i) Query Parser, (ii) Plan and (iii) Executor. The Query Parser
parses the query. The Query Plan decides what is the best
data selection method based on the data type (data dumps,
continuous streaming) and format (i.e. N-Triples, Turtle, etc).
For instance, data dumps may be unsorted and thus need a
more complex operation (see subsection III-C). The Query
Engine supports two types of filters, Regex and SPARQL
Query. The Regex Filter is designed to enable the selection
of data by using simple string patterns. SPARQL Query Filter
is more flexible and provides a richer data selection by using
Basic Graph Patterns. However, not all features available in
SPARQL queries are supported by the Query Engine, i.e.:

1) The use of triple patterns in which a triple shares more
than one join condition with another triple (see Defini-
tion 4);

2) Use of Solution Modifiers (i.e., ORDER BY or
PROJECTION);

3) Other Query Forms if not SELECT (i.e., DESCRIBE,
CONSTRUCT and ASK).

(3) The Persistence Module performs the data access man-
agement, manages the persistence, as well as updates the re-
trieval of the join candidates. The Persistence Module contains
two Persistence layers, i.e. in-Memory and in-Disk. The in-
Memory yields fast update operations, but the available size
can be insufficient, depending on the slice operation. Thus, the
in-Disk acts as a contingency solution, providing more space
when necessary. The data management policy implemented by
the Persistence Module is better explained in the next section.

IV. EVALUATION

The goal of our evaluation was to answer the following
questions:

1) How efficient is our approach perform in standard bench-
marks?

2) How it performs with regard to the state-of-the-art RDF
slice approach?

6http://rdf4j.org/

http://rdf4j.org/
https://www.researchgate.net/publication/220309791_The_Pathologies_of_Big_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==

Query Triple Patterns Join Dataset

Q1

{?s a dbo:Drug.

SS+SO DBpedia
?s ?p ?o.}
{?s1 a dbo:Drug.
?o1 ?p1 ?s1.}
{?s2 a dbo:Disease.
?s2 ?p2 ?o2.}
{?s3 a dbo:Disease.
?o3 ?p3 ?s3.}

Q2
{?s a dbo:Drug.

SS+SS DBpedia?s ?p ?o.}
{?s1 a dbo:Disease.
?s1 ?p1 ?o1.}

Q3
{?s a diseasome:diseases.

SS+SO Diseasome?s ?p ?o.}
{?s1 a diseasome:diseases.
?s1 ?p1 ?o1.}

Q4
{?s a DrugBank:Drugs.

SS+SO DrugBank?s ?p ?o.}
{?s1 a DrugBank:Drugs.
?s1 ?p1 ?o1.}

Q5
{?s a Sider:Drugs.

SS+SO Sider?s ?p ?o.}
{?s1 a Sider:Drugs.
?s1 ?p1 ?o1.}

Q6 {dbr:Cladribine dbo:iupacName ?o. SS DBpediadbr:Cladribine ?p1 ?o1.}

Q7 {dbr:Delirium dbo:wikiPageWikiLink ?o. SO DBpedia?o ?p ?q.}

Q8 {?s1 dbo:lastWin ?o. SO DBpedia?o ?p ?o1.}

TABLE I
RDF SLICE BENCHMARK QUERIES [14], [15].

3) Does the proposed approach scales in large size datasets?
4) How does our approach performs in comparison of other

approaches as triple stores and Linked Data Streaming
(LDS)?

Due the experiments, all tests with triple store were per-
formed using an open-source Virtuoso Server7 version 7.0.0.
To this end, we used the previous implemented a Virtuoso
utility application [14], [15]. The Virtuoso application was
built using the Virtuoso JDBC Driver.8 The rationale of using
the Virtuoso JDBC Driver was to communicate directly with
the Virtuoso instance without the overhead generated by other
means such as HTTP clients. The Virtuoso utility allows
dropping graphs, loading dump files, and profiling queries
natively as ISQL client. To load the dump files into Virtuoso,
the function ld_dir9 was used in order to speed up the
loading. All files generated during the evaluation (e.g. logs
and tables) are available online.10

A. Experimental Setup

We evaluated our approach on four interlinked datasets,
i.e. DrugBank,11 Sider,12 Diseasome13 and the full English
dataset of DBpedia Version 2014. Table II shows the sizes of
these datasets. DBpedia-slice refers to a version of DBpedia
comprising all DBpedia datasets except page links and info box
properties. There are several SPARQL benchmarks designed
for measuring the performance of triple stores [18], [4],

7http://virtuoso.openlinksw.com/
8http://docs.openlinksw.com/virtuoso/VirtuosoDriverJDBC.html
9http://docs.openlinksw.com/virtuoso/fn ld dir.html
10http://aksw.org/projects/RDFSlice
11http://www.drugbank.ca/downloads
12http://wifo5-03.informatik.uni-mannheim.de/sider/
13http://diseasome.eu/

Dataset Size Triples Entities

DBpedia2014en 122 GB 858,089,974 29,747,387
DBpedia-slice 61 GB 125,554,842 13,410,215
DrugBank 98 MB 517,150 19,696
Sider 16 MB 91,569 2,674
Diseasome 12 MB 72,463 8,152

TABLE II
EVALUATION DATASETS STATISTICS.

[8], [17] or RDF streaming approaches [21]. They focus on
evaluating SPARQL features (e.g. Order By, Group By) in
endpoints or streaming RDF data rather than the extraction of
relevant fragments. Thus, we use the previously introduced
RDF Slice benchmark [14], [15] with addition to Query
9 Table I. The RDF Slice benchmark [14], [15] in Table I was
generated by two experts in SPARQL and in the ontology of
the underlying datasets created nine SPARQL queries shown
in Table I. The RDF Slice benchmark queries were designed
to evaluate scenarios where a slicing tool can be used. The
provided queries take into account the two most frequent types
of join (i.e., SS and SO) and their resp. time complexities.
The join types of the associated BGPs and the related datasets
are shown. For instance, query Q1 running on DBpedia
contains eight triple patterns, which can be divided into four
disjoint BGPs having as join type either subject-subject (SS)
or subject-object (SO). The benchmark does not take into
account queries containing patterns with join types SP, OP,
and OO, since they are very rare (∼5%) in real SPARQL
queries and have the same complexity as SO queries [14], [15],
[16]. We measured the performance of our slicing approach
with Query 9 Table I in terms of runtime and memory
consumption. For the evaluation, we considered a scenario
where a user is searching for the relevant fragment in the LOD
Cloud. Therefore, we compared our proposed approach with
the traditional method of downloading, loading and slicing
datasets with triple stores. Although this paper extends the first
approach on RDF Dataset Slicing, we conduct comparative
experiments with other frameworks. The experiments were
performed on a Windows 7 machine with an Intel Core M
620 processor, 6GB of RAM and a 1TB SSD.

B. Results

Figure 3 presents the runtime and memory consumption
on execution Torpedo. We also measured the Explored graph
and the Disk Space consumption during the slicing process.
Similar to the previous works [14], [15], these parameters were
recorded after each time one additional MB or GB of data was
processed resp. on small and large files. The diagram shows
the dataset being analyzed at most three times during the
slicing process. Therefore, the Figure 3 of the explored graph
contains three hops. In regards to the optimizations discussed
in Section III, results show that Torpedo gains 26% on runtime
performance while compared with the state-of-the-art.

Table IV show the total runtime required for slicing DBpe-
dia on either triple store and Torpedo. In all cases we consider

http://virtuoso.openlinksw.com/
http://docs.openlinksw.com/virtuoso/VirtuosoDriverJDBC.html
http://docs.openlinksw.com/virtuoso/fn_ld_dir.html
http://aksw.org/projects/RDFSlice
http://www.drugbank.ca/downloads
http://wifo5-03.informatik.uni-mannheim.de/sider/
http://diseasome.eu/
https://www.researchgate.net/publication/222830276_LUBM_a_benchmark_for_OWL_knowledge_base_systems?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/281574330_LSQ_The_Linked_SPARQL_Queries_Dataset?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/257030063_SRBench_A_streaming_RDFSPARQL_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/279204970_FEASIBLE_A_Featured-Based_SPARQL_Benchmark_Generation_Framework?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==

Query Triple Patterns Join Dataset

Q9

{?s a dbo:Drug.

SS+SO DBpedia

?s ?p ?o.}

DrugBank

{?s1 a dbo:Drug.

Sider

?o1 ?p1 ?s1.}

Diseasome

{?s2 a dbo:Disease.
?s2 ?p2 ?o2.}
{?s3 a dbo:Disease.
?o3 ?p3 ?s3.}
{?s4 a dbo:Drug.
?s4 owl:sameAs ?o4.
?o4 ?p5 ?o5. }
{?s5 a dbo:Disease.
?s5 owl:sameAs ?o6.
?o6 ?p6 ?o7.}

TABLE III
QUERY 9, AN EXTENSION OF THE QUERY 1 WITH THE ADDITION OF

MULTI-JOIN BGPS.

1

16

256

4096

65536

M
em

o
ry

 U
sa

ge
 (

M
B

)

Runtime (m)

Explored Graph Slice (bytes) RAM Disk Space

Fig. 3. Slicing unsorted DBpedia datasets using Q9.

the scenario discussed in the introduction where the user does
not have the dataset already indexed, but rather is looking for
relevant fragments to be indexed. Thus, the load time (i.e.,
loading data into a triple store) is taken into account. There-
fore, we consider the indexing time for each query. Three of
the five queries—i.e, Q1, Q2, Q6, Q7, Q8—used in this
experiment perform an order of magnitude faster in compari-
son to the total time computed over the triple store–i.e. Q6,
Q7, Q8 perform ∼80% faster than triple stores. The Table V
presents the extraction time for slicing DBpedia, DBpedia-
slice, Drugbank, Sider and Diseasome using respectively the
queries Q1, Q3, Q4, and Q5. Table IV-B compares total
runtime requiring for slicing DBpedia using Torpedo and the
state-of-the-art RDF dataset slice approach.

C. Comparing different RDF streaming approaches

We evaluated our approach against CQELS and LDFrag-
ments. Table VII shows the result for streaming DBpedia over
CQELS engine using Q1. The CQELS engine can query static
files as well as continuous RDF data streaming; we evaluated it
using both targets. For static files, the engine returns an OUT
OF MEMORY error. This issue is due to CQELS processes
static graphs using the Apache Jena14 in-memory model,
which consists of loading the whole graph into memory. Thus,
approaches that load the whole dataset in memory are usually
unable to handle big dataset files. Thereafter, we evaluate
CQELS using continuous RDF data streaming from DBpedia
dump files. The streaming was performed with two parameters:

14https://jena.apache.org/

Approach Query Sort Load Extraction Total % Gain

Triple store Q1 - 875.6 1.8 877.4 64.66Torpedo - - 310 310

Triple store Q2 - 875.6 2.1 877.7 64.11Torpedo 95.7 - 219.3 315

Triple store Q6 - 875.6 0.0 875.6 89.07Torpedo 95.7 - 0.0 95.7

Triple store Q7 - 875.6 0.0 875.6 89.07Torpedo 95.7 - 0.0 95.7

Triple store Q8 - 875.6 2.95 878.55 87.13Torpedo 95.7 - 17.38 113.08

TABLE IV
A COMPARISON OF THE TOTAL RUNTIME IN MINUTES REQUIRED FOR

SLICING DBpedia2014en USING TORPEDO AND TRIPLE STORE WITH FIVE
DIFFERENT JOIN TYPE QUERIES.

Dataset Query Extraction

DBpedia2014EN Q1 310.1
DBpedia-slice2014EN Q1 168.4
Drugbank Q4 3.2
Sider Q5 1.2
Diseasome Q3 0.5

TABLE V
EXTRACTION TIME IN MINUTES FOR UNSORTED DATASETS OF DIFFERENT

SIZES.

(1) using a time range of 10 seconds performing the query ev-
ery 5 seconds (parameters RANGE 5 STEP 5) and (2) using
time range of one day in tumbling mode (parameters RANGE
1d TUMBLING). In both cases, CQELS ran the processes
for more than 36 hours and no results were given back. We
terminated the process since it was not possible to estimate
for how long it would have kept running. Nevertheless, we
measured the time to process a chunk of 20,000 triples, which
is described in Table VIII. Based on that, we estimated,
supposing CQELS kept a constant processing time, it would
take ∼284 days to process the whole DBpedia dataset dump
files. We ran LDFragments using HDT index with the same
setup to slice DBpedia and measure the performance. The
results in Table VII demonstrate that the slicing process fails
in the loading stage. The analysis of the LDFragment was
made in two environments: first dedicating 4GB of RAM to the
loading process, and secondly dedicating 170GB of RAM to
the loading process. In both environments, the loading process
failed to return an unexpected OUT OF MEMORY error. The
later, after running for 150 minutes. When it comes to big
datasets, the loading stage of HDT index did not perform

Version Query Extraction % Gain

Torpedo Q1 310 26.36State-of-the-art Q1 421

TABLE VI
EVALUATING THE DIFFERENT SLICE RUNTIME BETWEEN THE TORPEDO

AND THE STATE-OF-THE-ART RDF DATASET SLICING APPROACH.

well due to the linear growth of the memory consumption.
Therefore, the use of using HDT index—including approaches
that uses it e.g. LDFragmentsHDT —is not indicated for slicing
in scenarios where the datasets are large. For instance, when
extracting relevant fragments from the LOD Cloud the user
will require as much as RAM as the size of the LOD, which
is not realistic in real scenarios. We also perform a slice
using Jena and show that Torpedo is ∼75% faster in terms
of runtime. In all cases Torpedo perform better because the
runtime required for build the index in triple stores scenarios
have the same time complexity as processing the whole
triple file—i.e., O(n log n)–, but Torpedo stores a very small
fragment of the required slice (i.e. the most restrictives triple
patterns Tr), reducing the operations to O(n log Tr), wheres
Tr << n. Thus, in practice, the slice operations performed
by Torpedo are close to O(n), which explains why it achieves
better performance in comparision with traditional approaches.
Furthermore, as mentioned before, triple stores require the
downloading and indexing steps, which, apart from the run-
time, may require large storage consumption (e.g., to extract
Drug and Disease information from the LOD Data Cloud (Q9),
it will be required to download and index the entire LOD Data
Cloud). Table VII shows CQELS compared in three modes: (1)
using static graph; (2) in streaming mode with RANGE 10s
and STEP 5s; (3) in streaming mode using 1-day RANGE
in TUMBLING. The static graph mode generates an OUT
OF MEMORY error since CQELS loads the entire graph into
memory. The other two modes were interrupted after running
for 36 hours and no result was found. Table VIII shows that
the processing of big data streaming is inadequate for CQELS.
LDFragments fails during the loading stage generating an OUT
OF MEMORY error either using 4GB and 170GB of RAM
dedicated to the loading process. Overall, our results show
that our implementation of Torpedo clearly outperforms all
alternative state-of-the-art approaches for dealing with slicing
RDF data.

V. RELATED WORK

To the best of our knowledge, Marx et al. [14], [15]
provides the first work specifically targeting RDF dataset
slicing. However, as pointed before [14], [15], RDF dataset
slicing is related to the works in the three different areas a)
crawling, b) RDF Indexes and c) Streaming. We briefly discuss
them in the following subsections.

A. Crawling

RDF data crawlers are designed to harvest RDF content
from the Web of Data or embedded in Documents. For exam-
ple, MultiCrawler [9] allows the extraction of RDF published
in HTML documents as well as files in a RDF-like format
from the Web. It focuses on locating relevant links to content
in order to extract data. Its approach is designed for indexing
and finding documents with relevant content rather than extract
fragments of larger datasets. LDSpider [11] is a lightweight
RDF LOD crawler that delivers relevant RDF data crawled
to the user. Through LDSpider, users can specify the relevant

content that must be dereferenced. With Semantic Web Client
library [10] users can perform SPARQL queries over crawled
RDF data on query execution time. Although RDF dataset
slicing approaches [14], [15] are also designed to extract
relevant RDF data from the Web, they are not designed to
traverse links and uses specific selection criteria (i.e., SPARQL
graph patterns) to determine the data that should be extracted.

B. RDF Indexes
HDT [7] is a binary representation addressing the problem

of efficient formats for publication and exchange of RDF
data. The proposed approach is based on three RDF dataset
components: (i) header information, (ii) a dictionary, and (iii)
the actual triple structure, called HDT. This approach works
in a streaming processing fashion. Using the HDT index, data
published on the Web can be queried with simple triple pat-
terns (i.e., (s, p, o), (s, ?p, ?o) and (s, p, ?o)). The experiments
show that datasets in HDT format can be compressed by more
than fifteen times as compared to other representations. Yuan
et al. [20] design TripleBit, a compact RDF store bit matrix
storage structure and the encoding-based compression method
for storing huge RDF graphs more efficiently. The storage
structure based on bit matrix enables TripleBit to reduce the
number and the size of indexes while speeding up the scan
and merge-join performance.

C. Streaming
Linked Streaming Data (LSD) such as CQELS [13], Stream-

ing SPARQL [5], C-SPARQL [3], Sparql stream [6] and EP-
SPARQL [1] are designed for continuous query data streaming.
The LSD approaches use a time window to define the data
against which the query will be performed. LSD approaches
allow users to select the query valuation criteria on either
when window closes (e.g. C-SPARQL [3]) or changes (e.g.
CQELS [13]). Some approaches as CQELS also supports the
querying static graphs as dump files. Different from LSD, RDF
data slicing approaches are designed for extracting relevant
fragments from atomic data streaming, i.e., large files in the
distributed static LOD.

RDF Streaming Indexes and their Applications. LDFrag-
ments [19] introduces a low-cost query technique based on
triple pattern fragments. Here, the concept of fragments can be
aligned to the notion of query evaluation previously introduced
by Marx et al. [14]; however, fragments are extended to
triple patterns, pages, and collections. LDFragments employs
the HDT index and introduces a client-side SPARQL query
processing algorithm based on a dynamic iterator pipeline. As
HDT allows only the selection of simple triple patterns, there is
a need for a dynamic interaction between all triple patterns in
a given SPARQL query. Thus, the proposed method generates
many sub-queries per SPARQL query and is significantly
slower than full-index approaches as triple stores. However,
the authors argue pro its scalability.

VI. CONCLUSIONS

In this work, we present Torpedo, an RDF dataset slicing
approach that enables users to slice portions of a dataset

https://www.researchgate.net/publication/265140939_Querying_Datasets_on_the_Web_with_High_Availability?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220854335_Streaming_SPARQL_-_Extending_SPARQL_to_Process_Data_Streams?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466451_Executing_SPARQL_Queries_over_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221024038_EP-SPARQL_A_unified_language_for_event_processing_and_stream_reasoning?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262241648_TripleBit_A_fast_and_compact_system_for_large_scale_RDF_data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/267705830_Enabling_Ontology-Based_Access_to_Streaming_Data_Sources?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467189_LDspider_An_Open-source_Crawling_Framework_for_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466727_MultiCrawler_A_Pipelined_Architecture_for_Crawling_and_Indexing_Semantic_Web_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==

Approach Query Machine Load Query Execution Parameters Extraction % Gain

CQELS Q1 PC - OUT OF MEMORY
STATIC GRAPH [RANGE 10s STEP 5s] > 2160 >85.64

MAX 4GB RAM
CQELS Q1 PC - INTERRUPTED AFTER 36h STREAMING [RANGE 10s STEP 5s] > 2160 >85.64
CQELS Q1 PC - INTERRUPTED AFTER 36h STREAMING [RANGE 1d TUMBLING] > 2160 >85.64
Jena Q1 PC 21h 12m - 1272 75.66
LDFragmentsHDT Q1 PC OUT OF MEMORY 4m MAX 4GB RAM FAIL -
LDFragmentsHDT Q1 SERVER OUT OF MEMORY (>150m) 4m MAX 170GB RAM FAIL -

TABLE VII
COMPARING OTHER RDF STREAM ENGINES IN SLICING DBPEDIA USING QUERY 1 (Q1).

Approach Total Time(s)

CQELS 572.325
Torpedo 0.135

TABLE VIII
COMPARING THE TIME FOR PROCESSING 20,000 STREAMED TRIPLES

BETWEEN TORPEDO AND CQELS.

that they want to use in their applications. The proposed
approach works through a portion of SPARQL which we
dubbed eSliceSPARQL (a relevant and frequently used subset
of SPARQL). We showed that our approach for RDF dataset
slicing named as Torpedo allows to select and extract rel-
evant knowledge from linked open datasets efficiently. We
provided a performance optimization through a transparent in-
memory layer. We evaluated different performance aspects of
RDF dataset slicing on the DBpedia, DrugBank, Sider and
Diseasome datasets. The observed results show an increased
performance w.r.t. the state-of-the-art RDF dataset slicing,
triple store, and RDF streaming approach. The main practical
benefit of our work is that it eliminates the need to index and
query irrelevant and potentially very large parts of datasets,
which can be resource-demanding and time-consuming. Tor-
pedo achieves this by only considering relevant portions of
a dataset for a particular use case. In future work, we will
study maximal fragments of SPARQL that can be executed
efficiently using our approach.

REFERENCES

[1] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic.
EP-SPARQL: a unified language for event processing and stream reason-
ing. In Proceedings of the 20th international conference on World wide
web, WWW ’11, pages 635–644, New York, NY, USA, 2011. ACM.

[2] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves
Vandenbussche. SPARQL Web-Querying Infrastructure: Ready for
Action? In The Semantic Web - ISWC 2013 - 12th International
Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013,
Proceedings, Part II, pages 277–293, 2013.

[3] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael
Grossniklaus. An execution environment for c-sparql queries. In Pro-
ceedings of the 13th International Conference on Extending Database
Technology, EDBT ’10, pages 441–452, New York, NY, USA, 2010.
ACM.

[4] C. Bizer and A. Schultz. The Berlin SPARQL benchmark. International
Journal on Semantic Web and Information Systems (IJSWIS), 5(2):1–24,
2009.

[5] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming SPARQL
- extending SPARQL to process data streams. In ESWC2008, pages
448–462. Springer-Verlag, 2008.

[6] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair J. G. Gray. Enabling
ontology-based access to streaming data sources. In Proceedings of
the 9th international semantic web conference on The semantic web
- Volume Part I, ISWC’10, pages 96–111, Berlin, Heidelberg, 2010.
Springer-Verlag.

[7] Javier D. Fernndez, Miguel A. Martnez-Prieto, Claudio Gutirrez, Axel
Polleres, and Mario Arias. Binary RDF Representation for Publication
and Exchange (HDT). Web Semantics: Science, Services and Agents on
the World Wide Web, 19:22–41, 2013.

[8] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark
for owl knowledge base systems. Web Semantics: Science, Services and
Agents on the World Wide Web, 3(2):158–182, 2005.

[9] Andreas Harth, Jrgen Umbrich, and Stefan Decker. Multicrawler: A
pipelined architecture for crawling and indexing semantic web data. In
In 5th International Semantic Web Conference, pages 258–271, 2006.

[10] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing
sparql queries over the web of linked data. In Proceedings of the 8th
International Semantic Web Conference, ISWC ’09, pages 293–309,
Berlin, Heidelberg, 2009. Springer-Verlag.

[11] Robert Isele, Jürgen Umbrich, Christian Bizer, and Andreas Harth.
Ldspider: An open-source crawling framework for the web of linked
data. In Proceedings of the 2010 International Conference on Posters
& Demonstrations Track-Volume 658, pages 29–32. CEUR-WS. org,
2010.

[12] Adam Jacobs. The pathologies of big data. Communications of the
ACM, 52(8):36–44, August 2009.

[13] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A Native and Adaptive Approach for Unified Processing
of Linked Streams and Linked Data. In Proceedings of the 10th Inter-
national Conference on The Semantic Web - Volume Part I, ISWC’11,
pages 370–388, Berlin, Heidelberg, 2011. Springer-Verlag.

[14] Edgard Marx, Saeedeh Shekarpour, Sören Auer, and Axel-
Cyrille Ngonga Ngomo. Large-scale RDF Dataset Slicing. In
7th IEEE International Conference on Semantic Computing, September
16-18, 2013, Irvine, California, USA, 2013.

[15] Edgard Marx, Tommaso Soru, Saedeeh Shekarpour, Sören Auer, Axel-
Cyrille Ngonga Ngomo, and Karin Breitman. Towards an Efficient
RDF Dataset Slicing. International Journal of Semantic Computing,
07(04):455–477, 2013.

[16] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser
Mehmood, and Axel-Cyrille Ngonga Ngomo. Lsq: The linked sparql
queries dataset. In ISWC, pages 261–269, 2015.

[17] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga
Ngomo. FEASIBLE: A Feature-Based SPARQL Benchmark Generation
Framework. In International Semantic Web Conference (ISWC), 2015.

[18] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph
Pinkel. Spˆ 2bench: a sparql performance benchmark. In Data
Engineering, 2009. ICDE’09. IEEE 25th International Conference on,
pages 222–233. IEEE, 2009.

[19] Ruben Verborgh, Olaf Hartig, Ben De Meester, Gerald Haesendonck,
Laurens De Vocht, Miel Vander Sande, Richard Cyganiak, Pieter Col-
paert, Erik Mannens, and Rik Van de Walle. Querying Datasets on the
Web with High Availability. In Semantic Web Conference (1), volume
8796, pages 180–196. Springer, 2014.

[20] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling
Liu. TripleBit: A Fast and Compact System for Large Scale RDF Data.
Proc. VLDB Endow., 6(7):517–528, May 2013.

[21] Ying Zhang, Pham Minh Duc, Oscar Corcho, and Jean-Paul Calbimonte.
Srbench: a streaming rdf/sparql benchmark. In The Semantic Web–ISWC
2012, pages 641–657. Springer, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/265140939_Querying_Datasets_on_the_Web_with_High_Availability?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/265140939_Querying_Datasets_on_the_Web_with_High_Availability?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/265140939_Querying_Datasets_on_the_Web_with_High_Availability?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/265140939_Querying_Datasets_on_the_Web_with_High_Availability?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/265140939_Querying_Datasets_on_the_Web_with_High_Availability?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220854335_Streaming_SPARQL_-_Extending_SPARQL_to_Process_Data_Streams?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220854335_Streaming_SPARQL_-_Extending_SPARQL_to_Process_Data_Streams?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220854335_Streaming_SPARQL_-_Extending_SPARQL_to_Process_Data_Streams?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/216308024_An_Execution_Environment_for_C-SPARQL_Queries?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220309791_The_Pathologies_of_Big_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220309791_The_Pathologies_of_Big_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467038_A_Native_and_Adaptive_Approach_for_Unified_Processing_of_Linked_Streams_and_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/224400495_SP2Bench_A_SPARQL_performance_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/224400495_SP2Bench_A_SPARQL_performance_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/224400495_SP2Bench_A_SPARQL_performance_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/224400495_SP2Bench_A_SPARQL_performance_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/240615179_Large-scale_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/222830276_LUBM_a_benchmark_for_OWL_knowledge_base_systems?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/222830276_LUBM_a_benchmark_for_OWL_knowledge_base_systems?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/222830276_LUBM_a_benchmark_for_OWL_knowledge_base_systems?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466451_Executing_SPARQL_Queries_over_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466451_Executing_SPARQL_Queries_over_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466451_Executing_SPARQL_Queries_over_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466451_Executing_SPARQL_Queries_over_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/281574330_LSQ_The_Linked_SPARQL_Queries_Dataset?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/281574330_LSQ_The_Linked_SPARQL_Queries_Dataset?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/281574330_LSQ_The_Linked_SPARQL_Queries_Dataset?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262764115_Towards_an_Efficient_RDF_Dataset_Slicing?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220123872_The_Berlin_SPARQL_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220123872_The_Berlin_SPARQL_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/220123872_The_Berlin_SPARQL_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/257030063_SRBench_A_streaming_RDFSPARQL_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/257030063_SRBench_A_streaming_RDFSPARQL_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/257030063_SRBench_A_streaming_RDFSPARQL_benchmark?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/279204970_FEASIBLE_A_Featured-Based_SPARQL_Benchmark_Generation_Framework?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/279204970_FEASIBLE_A_Featured-Based_SPARQL_Benchmark_Generation_Framework?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/279204970_FEASIBLE_A_Featured-Based_SPARQL_Benchmark_Generation_Framework?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221024038_EP-SPARQL_A_unified_language_for_event_processing_and_stream_reasoning?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221024038_EP-SPARQL_A_unified_language_for_event_processing_and_stream_reasoning?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221024038_EP-SPARQL_A_unified_language_for_event_processing_and_stream_reasoning?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221024038_EP-SPARQL_A_unified_language_for_event_processing_and_stream_reasoning?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262241648_TripleBit_A_fast_and_compact_system_for_large_scale_RDF_data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262241648_TripleBit_A_fast_and_compact_system_for_large_scale_RDF_data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/262241648_TripleBit_A_fast_and_compact_system_for_large_scale_RDF_data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/267705830_Enabling_Ontology-Based_Access_to_Streaming_Data_Sources?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/267705830_Enabling_Ontology-Based_Access_to_Streaming_Data_Sources?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/267705830_Enabling_Ontology-Based_Access_to_Streaming_Data_Sources?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/267705830_Enabling_Ontology-Based_Access_to_Streaming_Data_Sources?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/267705830_Enabling_Ontology-Based_Access_to_Streaming_Data_Sources?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467189_LDspider_An_Open-source_Crawling_Framework_for_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467189_LDspider_An_Open-source_Crawling_Framework_for_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467189_LDspider_An_Open-source_Crawling_Framework_for_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467189_LDspider_An_Open-source_Crawling_Framework_for_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221467189_LDspider_An_Open-source_Crawling_Framework_for_the_Web_of_Linked_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466727_MultiCrawler_A_Pipelined_Architecture_for_Crawling_and_Indexing_Semantic_Web_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466727_MultiCrawler_A_Pipelined_Architecture_for_Crawling_and_Indexing_Semantic_Web_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/221466727_MultiCrawler_A_Pipelined_Architecture_for_Crawling_and_Indexing_Semantic_Web_Data?el=1_x_8&enrichId=rgreq-883e1f6a9b8265d569f5fb1fc7fe981e-XXX&enrichSource=Y292ZXJQYWdlOzMxMjEyMzMwNztBUzo0NDc3MjEzMTMxODE2OTZAMTQ4Mzc1NjQ4NzcyMw==
https://www.researchgate.net/publication/312123307

