Optimal Adaptation in Web Processes with
Coordination Constraints

Kunal Verma, Prashant Doshi, Karthik Gomadam, John Millad Amit Sheth
LSDIS Lab., Dept. of Computer Science
University of Georgia, Athens, GA 30602
{verma,pdoshi,karthik,jam,ami@cs.uga.edu

Abstract—We present methods for optimally adapting Web order) may need to beoordinatedwith a change in the service
processes to exogenous events while preserving inter-servicahat provides the motherboard.
constraints that necessitate coordination. For example, in a We present three methods for adapting the process in the

supply chain process, orders placed by a manufacturer may get L .
delayed in arriving. In response to this event, the manufacturer face of external events and coordination constraints ketwe

has the choice of either waiting out the delay or changing the Participating services. Our methods improve on the previ-
supplier. Additionally, there may be compatibility constraints ous work by accounting for the uncertainty of events and

betwe_en Fhe different orders_, thereby introducing the problem & emphasizing cost-based optimality of decisions. We adopt
coordlnatl_on between them if the man_ufacturer chooses to chargy the paradigm that abstract process flows are pre-defined and
the suppliers. We adopt the paradigm that an abstract Web - -
process flow is pre-specified, and service managers are tasked?'OXI€S, whom we call service managers (SMs), are used
with interacting with the actual Web services. We focus on the t0 discover and interact with the required Web services [2],
decision making models of the managers who must adapt to [12]. We focus on the decision models for the managers
external events while satisfying the coordination constraints. We and for this purpose use stochastic optimization framesvork
use Markov decision processes as the underlying m_odels for_theca”ed Markov decision processes (MDPs) [15]. The input
managers, and show how they can be formulated offline resulting . - - . .
in policies that guide the managers’ actions. Our methods range to our models is a §tochast|q 'state transition machine which
from being centralized and globally optimal in their adaptation ~represents the possible transitions for each SM, and ths cos
but not scalable, to decentralized that is suboptimal but scalable of the transitions. In our first method, we adopt a global view
to multiple managers. We also develop a hybrid approach that of the process and formulate a multi-agent MDP model for
improves on the performance of the decentralized approach with ¢,nroling the SMs. This centralized approach guarartiests
a minimal loss of scalability. L . .
the adaptation in response to external events, while réagec

the coordination dependencies is globally optimal. Howeve
this approach does not scale well to a large humber of SMs.

Recently, there is growing interest in using Web servicé® address the scalability issue, we present a decenttalize
(WS) as the key building blocks for creating inter- andpproach by formulating a MDP model for each individual
intra-enterprise business processes. They use the servi@M in the process and a mechanism for coordinating be-
oriented architecture [5] as a point of departure, and awgeen the SMs. However, this approach is no longer globally
called Web processes. Previous work on Web processes bpimal, and we provide a worst case bound for the loss
focused largely on configuring or formulating the procesa floin optimality. A natural extension is to develop a hybrid
[1], [2]. [6], [22] and developing the associated languagegpproach that follows a middle path between the centralized
for representing the Web processes [14]. In addition to tlad decentralized approaches. We briefly outline one such
problem of composition of Web processes, we must al$gbrid approach and demonstrate that its performance tisrbet
address the challenges of adaptation, optimality, andvezeo than the decentralized one. We experimentally evaluate our
ability. Together these properties contribute toward nagi#e methods using an example supply chain scenario, and analyze
and dynamic Web processes. For example, consider a supply different decisions that are made by the managers for
chain process where a manufacturer is awaiting merchandiggying dynamism in the environment.
that was ordered previously. If the shipment is delayed, the
manufacturer may wait out the delay or it's process may Il. RELATED WORK
adapt by possibly canceling the order and choosing a differe Much of the earlier work on adaptation concentrated on
supplier. manually changing traditional processes at both the logit a

In this paper, we address the problem of optimally adaptirgstance levels. In [9], [16] graph based techniques weee us
Web processes to external events. Adaptation in processetievaluate the feasibility and correctness of changesén th
further complicated in the presence of constraints betweeontrol flow of running instances. Ellis et al. [7] used petri
services. An example constraint is when the merchandisets for formalizing the instance level changes. In a soraéwh
ordered at different points in the process must be compgatibsimilar vein, Aalst and Basten [18] proposed a petri-neelas
For example, in a supply chain process that involves orderitheory for process inheritance which categorized the tyfes
computer parts, RAM that is ordered from a memory chiphanges that do not affect other interacting processese Mor
provider service must be compatible with the motherboaatl tirecently, Muller et al. [13] used event-condition-actiaries
is ordered from another service. Hence, changing the servio make changes in running instances. None of these papers
that provides RAM (perhaps due to a delay in satisfying tHeave considered the issue of long term optimality of the

I. INTRODUCTION



adaptation, as we do with the help of stochastic optimimationotherboard and changing the motherboard supplier. Such a
frameworks. Our work also addresses the added complexitycision might prove more costly than waiting out the delay
of inter-service dependencies in a process. Isolated pttemin receiving the RAM. The problem is to adapt optimally to
to address inter-task dependencies in processes incllidie [4the external events like delay while respecting the coimgta
which dependencies at the transactional level were erdorce
using scheduling. In this work, the focus was on generating
feasible schedules without emphasis on being optimal. ThisWe adopt METEOR-S [2], [21] as the services-oriented
and other works [10], [17] used task skeletons to represé}{phitecture, within which we implement the Web process.
the transactional semantics of databases and Web ser@iges. N this section, we briefly outline the relevant componerits o

use of probabilistic finite state machines (Markov chaissy i the architecture, and refer the interested reader to [} [2
generalization of the task skeletons as used previously. for further details. METEOR-S creates a virtual layer over a

WS-BPEL [14] Web process engine that allows dynamic con-
[1l. EXAMPLE: SUPPLY CHAIN figuration and run-time execution abstractWeb processes.
Processes must continuously adapt to stimuli from a dyhis is done with the help of an execution environment and a
namic environment to remain optimal. The adaptation Ronfiguration module. The execution environment consits o
further complicated when different parts of the process afdVs that control the interaction with a particular disceder
inter-dependent and must coordinate with each other. larordVS(s). An optional process manager (PM) is responsible for
to motivate this problem, consider Dell’s supply chain @ss; global oversight of the process. From the implementatiantpo
as presented in [8]. As pointed out in [8], it is crucial foof view, when the process engine makes a call to a WS —
Dell to manage optimal inventory levels of suppliers’ int@y described using WSDL-S [3] —itis routed to the SM. Based on
centers called revolvers. Dell incurs significant costsaitpin  the semantic template associated with the call, the SMzeli
the revolvers run out and its computer production is delayedie configuration module to discover services that match the
On the other hand, a surplus of parts is detrimental to tkgmplate, and identify the compatible sets.
suppliers. Clearly, an adaptive supply chain process idette While the SMs in METEOR-S exhibit the capabilities of
that accountsfor delays and switches suppliers if the risk oflynamic discovery and binding of WSs to abstract processes
production delay outweighs the cost of changing suppliers.and possess some recovery capabilities from service éailur
We focus on a small but interesting component of thiéey are unable to adapt to logical failures in their intécaus
supply chain to illustrate our methods and evaluate thefith WSs. Logical failures include domain specific applioati
We consider the supply chain process of a computer man@vel failures such as a delay in delivery of ordered goods in
supply chain process. In this paper, we present approakhes t
allow the METEOR-S framework to adapt to logical failures.

IV. WEB PROCESSARCHITECTURE

Supplier

A V. BACKGROUND: MARKOV DECISION PROCESSES

supplier
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interaction with;

——Rupplicr Order N Markov decision processes (MDPs) [15] are well known and
R, ived | . . . . « .
T U delayed opim | intuitive frameworks for modeling sequential decision inak
compatible || Received o) H it i
| N Ord t .
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_ capture costs and thereby guarantee cost-based optiroélity

Fig. 1. An example supply chain process of a computer manufacturfpge decisions. An MDP is formally a tuple:

facturer .wh_ic.:h operates. on minimgl inventory, and themfor MDP = (S, PA, T, C,0C)

incurs significant costs if its order is delayed. The compute

manufacturer typically orders in bulk different computarts where S is the set of states of the procesBA : S —

from different suppliers. Since the parts must be assemblBdA) is a function that gives the set of actions permissible

into a single computer, they must be compatible with eadtom a state. Here, A is the set of possible actions and

other. For example, the RAM must inter-operate with th®(A) is its power setT : S x A x S — [0,1] is the

motherboard(Fig. 1). Therefore, if the delivery of the RAMMarkoviantransition function which models the probability of

is delayed and the manufacturer chooses to change the R&M resulting state on performing a permitted action fromeo

supplier, the supplier of the motherboard must also be adngdocal state Pr(s'|s,a)). C: S x A — R is the cost function

to preserve the compatibility constraint. which gives the cost of performing an action in some state of
As an example of the type of choice involved in this procesfie process. The parametél, is the optimality criterion. In

in deciding to change the RAM supplier the manufacturdghis paper, we minimize the expected cost over a finite number

must take into account the consequences in terms of costobktepsy € N, also called the horizon. Additionally, each unit

ordering the motherboard from a new compatible supplier toof cost incurred one step in the future is equivalent tonits

Of course, the cost of switching suppliers will vary with thet presenty € [0,1] is called the discount factor with lower

state of the process. For example, if the delivery of the RAMalues ofy signifying less importance on future costs.

is delayed and the motherboard has arrived, then a decisioitVe solve the MDP offline to obtainolicy. The policy is a

to change the RAM supplier would entail returning back therescription of the action that is optimal given the staté¢hef

process and the number of steps to go. Formally, a policy is,

lit's possible that the RAM from a new supplier might be comdatibith - . ¢« N — A whereS andA are as defined previously, ahd

the existing motherboard, or the same RAM supplier can prowidether . .

compatible RAM in time. However, to focus on the coordinati@mstraint, is the set of natural numbers. The advamage ofa p0||cy5base

we do not consider these alternatives, but they can easicbemmodated. approach is that no matter what the state of the process is,



the policy will always prescribe the optimal action. In arde Since the global state is factored with each manager’s
to compute the policy, we associate each state with a valoeal state as its components, the PM may combine the local
that represents the long term expected cost of performiag thbservations so as to completely observe the global state.
optimal policy from that state. Let : S x N — R be the e PA:S — P(A) whereA = A, x A; is the set of joint
function that associates this value to each state. Then,  actions of all the SMs an®(A) is the power set ofA. The
actions include invocations of WS operation3A(s) is as
Va(s) = e”faZA” @n(s,a) defined previously in Section V. Using Definition 1, we may
decomposeP A(s) as: PA(s) = PA;(s;) x PA;(s;) where
Qn(s,a) = C(s,0) +7 Y _T(s|s,a)Voi1(s) (1) PA(sy) and PA,(s;) are the sets of permitted actions of the
s’ SMs: andj from their individual states; ands;, respectively.
Note thatvscs, Vo(s) = 0. Here,n € Nis the finite number e T : S x A x S — [0,1] is the transition function which
of steps to be performed. The optimal action from each stataptures the global uncertain effect of joint actions of$s.
is the one that optimizes the value function: Often the actions of each SM affect only its own state and
the global state space being factored, we may decompose the
global transition function into its components.
Definition 3 (Transition IndependenceThe global transi-

tion function,T'(s'|s,a), a € PA(s), may be decomposed:
Our first approach adopts a global view of the Web process;

Tn(s) = argmin Qn(s,a
( ) a€PA(s) I( ) (2)

. CENTRALIZED APPROACH M-MDP

we assume that a central process manager (PM) is taskdds'ls:@) = Pr((si, sj)|(si,5;), (ai, a;))

with the responsibility of controlling the interactions tfe = Pr(sjls}, (si, s;), (ai, a3)) - Pr(sj|(si, 5), (@i, a5))
SMs with the WSs. The advantage of adopting a centralized = Ti(SﬂSz’a a;) - Tj(s}]s5, a;)

approach to control is that we are able to guarantee global 3)

optimality of the service managers’ decisions while refipgc whereT;, T; are the individual SM's transition functions; €

the coordination constraints. We illustrate the approagihgy £ 4i(si): a; € PA;(s;), ands; ands; are the next states of
Fig. 2 1 and j, respectively. In other words, we assume that(s;

| (si,s5), (ai,a;) ,s;) = Pr(s}|si,a;), andPr(sg | (si,55),
(aiyaj)) = Pr(s}|s;,a;), because each SM's next state is

Order

ot ) influenced only by its own action and its current state.
- il e C :SxA — Ris the cost function. This function
Cancel

captures the global cost of invoking the WSs by the SMs
based on the global state of the process. These costs may
E =7 be obtained from the service level agreements [11] between
el the enterprise whose process is being modeled and the servic
providers. In our example, the cost function would capture
[ | Order not only the costs of invoking the WSs, but also the cost of
] Return sopier waiting for the delayed order and changing the supplier. As
ws we mentioned before, the possible change of supplier by one
SM must be coordinated with the other SM, to preserve the
product compatibility constraints. Coordination is ety by
MHcurring a very high global cost if only one SM changes its

orderMB

assemble

Cancel

Fig. 2. The PM does the global decision making for adaptation usi

the M-MDP model. supplier. This high cost signifies the penalty of violatimg t
A. Model product compatibility constraint.

We model the PM’s decision problem asnalti-agentMDP e OC is the optimality criterion as defined in Section V.
(M-MDP). M-MDPs generalize MDPs to multi-agent settings Let us utilize the M-MDP formalism introduced previously,
by considering the joint actions of the multiple agents. to model the supply chain example.

For the sake of simplicity, we consider two SMsand j. Example 1:An example global state of the process is
Our model may be extended to more SMs in a straightforwafdDCSR, ODCSR). This global state denotes thathas
manner. We formalize the PM as a M-MDP: h’_/ W
. placed an order @) that has not yet been delayed),
PM=(S,PAT,C,00) the supplier has not been changddS), andi has not yet
where: e S is the set ofglobal states of the Web process.received the orderR). SM j has placed an order that has
Often it is possible to define the global state using a fadtorbeen delayed but not changed its supplier. Possible actions
representation where the factors are the SMs’ local states.for each SM are the samel; = A; = { Order (O), Wait

Definition 1 (Factored State)The global state space may(W), ChangeSupplier (CS) }. The actionOrder denotes the
be represented in its factored forifi:= S; x S;. Here, each invocation of the relevant WS(s) of the chosen supplier to
global states € S is, s = (s;, s;), wheres; € S; is the local place an ordefWait is similar to a no operation (NOP), and
state (or the partial view) of SM, ands; € S; is the local ChangeSupplier signifies the invocation of the relevant WSs
state of SMj. to cancel the order or return it (if received), and select a

Definition 2 (Locally Fully Observable)A process is lo- new compatible supplier. A partial cost function is shown in
cally fully observable if each SM fully observes its own stat Fig. 3(b), and the transition function for an individual SM is
but not the state of the other manager. discussed next.



State (W, W) | (W,CS) | (CS,W) | (CS,CS)
(ODCSR, ODCSR) 0 550 550 350
3 (ODCSR, ODCSR) 200 450 750 250
(ODCSR, ODCSR) 0 550 550 350
(ODCSR, ODCSR) 0 460 550 260
o) (ODCSR, ODCSR) 200 750 450 250
(ODCSR, ODCSR) 400 650 650 150
(ODCSR, ODCSR) 200 750 450 250
(ODCSR, ODCSR) 200 710 450 160
(ODCSR, ODCSR) 0 550 550 350
(ODCSR, ODCSR) 200 450 750 250
035 / (ODCSR, ODCSR) 50 550 550 350
/0.85 (ODCSR, ODCSR) -50 460 550 260
@ 5/@ W (ODCSR, ODCSR) 0 550 460 260
(ODCSR, ODCSR) 200 450 460 160
(ODCSR, ODCSR) -50 550 460 260
(ODCSR, ODCSR) -50 460 460 170

(b)

Fig. 3. (a) A (probabilistic) state transition diagram illustrating the expanded tranitiwtion, 7,7, for the SMi. Transitions due to actions
are depicted using solid lines, and these are deterministic. Exogenats ave shown dashed. For clarity, the occurrence of no event is not
shown. The numbers denote example probabilities of occurrence ef/émes conditioned on the states. (b) The partial cost function for the
PM. We show the costs for the more interesting actions of waiting and clatiggnsupplier, for a subset of the states. The cost function
penalizes those action combinations where only one SM changes the stippsiesiolating the compatibility constraint.

B. Exogenous Events

In our example supply chain scenario, the manufacturer
must act in response to several events such as a notification
of delay from the supplier and a notification of receipt of the
order. In order to ensure that the SM responds to these events
optimally, they must be a part of our model. Since the events
are external to the Web process, we label themagenous

In order to model the exogenous events, we perform two
steps: (1) We specify expanded transition functions for the
SMsi andj. In other wordsTF : S; x A; x E; x S; — [0, 1],
where E; is the set of mutually exclusive events, and rest of
the symbols were defined previously. For our example~
{Delayed ReceivedNone}. The expanded transition functionrig. 4. A (probabilistic) state transition diagram illustrating the
models the uncertain effect of not only the SM’s actions btransition function,T;, for the SMi. Some of the transitions due
also the exogenous events on the state space. We show JHS fECOC AT Mo ROECEIRIRTE, (e AR denote he
expanded transition function for the SMn Fig. 3(a). (2) We
definea’priori a probability distribution over the occurrence of
the exogenous events conditioned on the state of the SM. FRd1o uses the joint state to index into the global policy. The
example, letPr(DelayedODCSR ) = 0.45 be the probability prescribed actions are then distributed to the correspgndi
that SMi’s order for RAM is delayed. SMs for execution.

We obtain the transition functiorij, that is a part of the  While the centralized approach requires the specification of
model defined in Section VI-A (see Eqg. 3), by marginalizing global model of the process, the advantage is that we can

or absorbing the events. Formally, guarantee the optimality of the global policy. In other wsrd
o _ E( e ‘ no other policy for controlling the SMs exists that will incan
Ti(s'ls,a) = ; T (silsi ais e)Priels:) expected cost less than that of the global policy. Consetylen

the global policy resolves the coordination problem betwee
Here, T;” is obtained from step (1) anflr(e|s;) is specified as the SMs in an optimal manner. Theorem 1 formally states this
part of the step (2) above. The marginalized transitiontionc result. Due to the lack of space, the proof of this theorem is
for the SMi is shown in Fig. 4. given in [20].

C. Global Policy Computation Theorem 1 (Global Optimality): The global policy of the

Solution of the process manager's model described in sgc'\-/l 7*, is optimal for the finite horizon discounted optimality

cr|ter|on [ |
tion VI-A results in aglobal policy, 7* : S x N — A. )
The global policy prescribes the optimal action that must he L€t US consider a Web process where there afe; 2,
performed by each SM given the global state of the W s. In the worst case, all the SMs may have to coordinate

process and the number of steps to go. Computation of il €ach other due to, say, the product compatibility con-
global policy is analogous to the Egs. 1 and 2, witheing stra!nts (Fig. 5()). For this case, Eq. 1 becoméss) =

the global state of the Web processthe joint action of the , /74t Qn(s, a), wherea € A, andA = A; x A; x A x...x
SMs, andI’(s'|s,a) may be decomposed using Eq. 3. Duringd,,. Here, 4;, A;, Ay, ..., A, are the action sets of the SMs

process execution, each SM sends its local state to the PM, k, ..., n, respectively. More realistically, only subsets of



< ) where:e S; is the set of local states of the SMe PA, :

| \SM" | | SM:/ | S — P(A;), gives the permissible actions Qf the SM for each
‘ ; : ‘ of its local states. An action may be the invocation and use
! ! ! ! ofaWS.e T} : S; x A; x S; — [0,1], is the local transition
ES Sl function.e C; : S; x A; — R, is the SM<’s cost function.
S IS This function gives the cost of performing an action from som
@ o) state of the SMs OCj; is the SMi’s optimality criterion. In

this paper, we assume that each of the SMs optimizes w.r.t. a
Fig. 5. Example coordination graphs. (a) The worst case coordinatigiiscounted finite horizon, though in general they could have

graph where all the SMs must coordinate with each other. (b) Mo, ; ; P ;
realistic case, where only subsets of SMs must coordinate. ftferent optlmallty.crltferla. For our supply chain exampthe
MDP for the SM: is given below.

the SMs may have to coordinate with each other, as shown irExample 2: An example local state of the SM ®DCSR
Fig. 5(b). In this caseV,(s) = min Qi (s, (a;,a;,a,,a;)) which denotes thathas placed an order that has been delayed,

+ Q2(s, (am,an)) = min QL(s, (ai, a5, ax,a;)) + but it has not changed its supplier. Possible actions foStile
. ) (aiaj,ak,a1) i1 are: A, = { Order (O), Wait (W), ChangeSupplier (CS)
<amlgl Q7 (8, (@m, an)). }. The semantics of these actions are as defined previously in

Example 1. The transition function was shown previously in
VIl. D ECENTRALIZED APPROACH MDP-CoM Fig. 4, and the partial cost function is shown in Table. I
While adopting a global view of the process guarantees
a globally optimal adaptation and coordination between the State | W | ¢S
SMs, the approach does not scale well to many services ODCSR | 0 | 200
in the process. This is because the decision making by the ODCSR | 250 | 150
process manager must take into account the possible actions ODCSR | 50 | 250

. . .. . ODCSR -50 175
of all the coordinating SMs. Of course, this is exponential TABLE T
in the number of SMs. As we mentioned previously, in the A PARTIAL COST FUNCTION FOR THESM i.

worst case this might involve all the SMs. In this section, The exogenous events that include a delay in receiving the
we present a decentralized approach that scales reasonghdi¢r and a notification of receipt of the order, are handie i
well to multiple managers, but in doing so we lose the globg|milar manner as described in Section VI-B. In other words,
optimality of the adaptation. This approach is made possilje expand the SM's local transition function to include the

due to the properties of transition independence and ladal feyents. As we mentioned before, the events may alter thé loca
observability exhibited by the process. state of the SM.

Our approach is based on formulating a MDP model for
each individual SM, thereby allowing each SM to make it8. Coordination Mechanism
own decision. We assume that all the SMs act at the same timen our decentralized approach' each SM arrives at its own
step, and actions of the other SMs are not observable. Sigegision on how to best respond to the exogenous events Sinc
coordination between the SMs that reflects the inter-servighe decision making is local, we must define a mechanism
dependency is of essence, we define a mechanism for ensutg@nsure coordination between the SMs in order to preserve
the coordination. Each SM, in addition to fully observing itthe coordination constraint. As an example, if the SM that is
local state, also observes the coordination mechanism JCobfdering RAM decides to change its supplier, then the SM
perfectly (Fig. 6). ordering the motherboard must follow suit, no matter whethe
it's an optimal decision for the other SM. This is precisdig t
source of the loss in optimality for our decentralized appio

Order

SM, kﬂosi;u Return SU',\J"Sier While mechanisms for coordinating between the SMs man-

Py WS ifest in various forms, one such mechanism is a finite state

machine (FSM), whose state is perfectly observable to all th

orderMB SMs. We may define the FSM to have two general states:
receave/{_bm Crorpmaton an uncoordinated(U) state and aoordinated(C) state. The

state of the FSM signifies whether the SMs must coordinate.
Formally, the FSM is a tupléY, A, 7), whereY is the set of

orderRAM

Order states of the FSMY = {U, C}. A is the set of joint actions
M, Loca) - Sm’}fer of the SMs defined previously. Here,: Y x A x Y — [0, 1]
ws is the transition function of the FSM. Initially the action$

Cancel

the SMs are uncoordinated — each SM is free to follow the
_ Each SM locallv decides its action i o th optimal action conditioned on its local state. We assume tha
"I:'lr?éGSMsagoordingt%auéingczli g:?)ll\/lstﬂgtmegtl% rgsggrr:/sei r?erf:cﬁ;?n}_ﬁa SM decides to change the. sgppller, it must signatitsnt .
first. 2 When any SM signals its intent to change the supplier,
A. Model the FSM transitions to the coordinated state. When the FSM
We model each SM’s decision making process as a MDB.in this state, all SMs are required to change their supplie

The MDP model for a SM, say, is:
2This behavior would require an additional action denothmgintent, which
SM; =(S;, PA;,T;,C;,0C;) we address later.



immediately. Their actions will also reset the FSM back ® thmay not be optimal forj. We calculate a bound for the error

uncoordinated state. We show the FSM in Fig. 7. that would be introducpd in this case. Let be the error
_ _ bound, theng,, = ||V,i —V;!||o, where||- || is the max norm,
<?7> <intent,” > v <*intent > Vi is the value function for the MDP model, aid is the

value function for tr(mg MDPéCoM)(modeI. The difference can
ismaz—Climin)(1—7"

be bounded as,, = =5 ), whereC; ,,;, and
< <cs¥cs > Ci max are the least and maximum costs, respectively. Note
’ that a SM may suffers the maximum loss in optimality when
Fig. 7. FSM for coordinating between the SMs. Transitions (solifYing to respect the coordination constraint. Due to latk o
arrows) fare caus%o: by thedjoint acgons of the SMs. * indirc]:atdes %rapace, we give the proof of this error bound in [20]. In order t
action of a SM, while '?’ indicates the remaining actions. The das ; ; ;
arrow gives the action rule for each SM when the FSM is in that Sta%lculate' the loss with respect to the globally optimal goli
or the simple case wher€'(s,a) = C;(s;,a;) + C;(s;,a;),
C. Expanded Model the error bound,, also represents the worst case loss from
To ensure coordination, the CoM must be included in tHgobal optimality. We note that this error bound does notesca
SM's decision making process. We do this by combining th&ell to many SMs. In general, foF SMs, the worst case error
MDP model that was defined previously in Section VII-Apound is(N — 1)e,.
with the CoM and call the new model, MDP-CoM. Within
. ' . VIIl. HYBRID APPROACH H-MDP-CoM
the MDP-CoM, the state space is expanded to include the ] OAC co .
states of the CoM as wellS; = S; x Y. The action choices Our hybrid approach uses the MDP-CoM model as a point
available to the SM are{/= A; U {Intent}. To ensure that the Of departure, but improves on its error bounds by allowing
SM changes the supplier iff the FSM is in the coordinated (& PM to step in during runtime and exercise some control
state, we define the functiof® 4, ((x, C)) = CS, and remove OVer the SMs’ actions when coordination is required. For
the choice of changing the supplier when the FSM is in tf&ample, when any SM intends to change the supplier, the
uncoordinated state? 4, ((s;, U)) = PA;(s;)/CS. Here, ™ PM decides whether or not to allow the action based on its
stands for any local state of the SM global optimality for all the SMs.
. The transition function is the joint defined &5:: S; x A; x A. Model
S; — [0,1]. Here,

R In order to enable the PM's decision, each SM sends to the
T;((s5, vV ai, (si,y)) = Pr(sjly’,a;, (si, y))Pr(y|a:, (si, y))PM, its action-value function for the optimal action as well
= T;(sjlas, s;) Pr(y'lai, y) as the other action alternatives. For the supply chain elgmp
when an SM, say, declares its intent to change its supplier,
Since the next state of the CoM depends on actioRsmust send to the PMQ: ((s;,y), C'S) and Q% ({s:,y), W),
of both the SMs, and the SM does not observe theheres; andy are the current states of the SMnd the CoM,
other SM's actions, we must average over the other's agspectively, andy’ is the action-value function. We denote
tions: Pr(y'la,y) = ., Pr(y'lai,a;,y)Pr(ajlai,y) = this action assendQ and is added to the previously defined
> a, TW'ai, az,y)Pr(a;ly) space of actions of each SM.This sequence of behavior is
When the state of the CoM i€, the SMi knows that enforced by the CoM, as shown in Fig. 8. Since the decision
everyone must change their respective suppliers, andftinere making is shared with the PM, the transitions of the CoM are
Pr(a; = CSly = C) = 1. On the other hand, when thealso dependent on the PM’s actions. Specifically, at stdte
state isU, we assume thathas no knowledge of the other'sof the CoM, if the PM decides that all the SMs should change
decision making model and therefore assumes that eachtiir suppliers, the mechanism will transition to stéte On
SM j’s actions are equally probable. The cost functioh,: the other hand, the PM may ask the SM that declared its intent
Six A; — R, gives the cost of acting from the combined localo wait out the delay represented by stéte of the CoM.
state and the state of the CoM. However, for our purposes, the
state of the CoM does not matter in deciding the cost. <rrx <wW>
<intent,*,* >

A
< sendQ,sendQ,W >
< *.intent,* >W
sendQ,sendQ,CS >
< sendQ*sendQ >
PN

< CSYCS >

D. Local Policy Computation

We associate with each local state of the SM and the state
of the CoM, a value function that gives the expected cost
of following an optimal policy from that state. Equation 1
forms the basis for computing the value function, while Eq. 2
computes the optimal policy for the MDP-CoM modet, :

S; x N — A;. Note that in these equations, we use the
expanded model described in Section VII-C. Fig. 8. The CoM for our hybrid approach.

While the decentralized approach scales well for multiplg Hyprig Policy Computation
SMs since each SM does its own decision making, the trade offC tina the local policy f h SM i | ¢
is our inability to guarantee global optimality. This is bese, omputing the focal policy for eac 'S analogous 1o

a SM’s decision does not take into account the state, actioF]hse corresponding computation in the MDP-CoM model. The

and costs of the other SM. For the supply chain example, Jmary difference is in the generation of the local trapsit

i'S 'men_t to change th? supphe.r would necessitate a Ch_angaNe assume that the SMs are able to communicate with the PM without
of supplier forj as well irrespective of the fact that the actiorany loss of information, though there may be a communication cost

<?,?>



function, 7;, shown in Eq. 4 that encompasses the transitiosgeps to go. When the cost of waiting for each SM in response
of the CoM. In addition to averaging over the actions of the a delay is low, as in Fig, 10(a), all of our models choose to
other SM,i must also average over the PM’s possible actionsait out the delay. For example; ((ODCSR, ODCSR))
However, the averaging is considerably simplified when we (W, W), and 7 ((ODCSR, U)) = =/ ((ODCSR,U)) =
observe that the PM’s action matters only when the CoM & . Of course, the random policy incurs a larger average cost
in the M state. The net result is a local policy which defersince it randomizes between waiting and changing the suppli
the deliberation over the coordinating action to the PM.  ers. When the penalty for waiting out the delay is 300 which is
The issue remaining to be resolved is the runtime decisigneater than the cost of changing the supplier (Fig. 10tbg),
process of the PM, when any of the SM declares its intent to Behaviors of the models start to differ. Specifically, duét$o
a coordinating action. For our example ifloes so, then the global view of the process, the M-MDP model does the best —
PM opts for aCS, if Q% ({s;, M),CS)+ Q% ((s;, M),CS) > always incurring the lowest average cost. For low probti
Qn((si, M), W) 4+ Q},((sj, M),a}), wherea} is the SMj's of the order being delayed, the M-MDP policy chooses to
optimal action af(s;, M). For this case, the CoM transitionschange the supplier in response to a delay, since it's less
from stateM to C,. Otherwise, the PM instructsto simply expensive in the long term. However, as the chance of ther orde
wait out the delay\(/), because this is less expensive globalligeing delayed increases, the M-MDP policy realizes thah eve
(in the long term) than all the SMs changing their supplier#. the SMs change the suppliers, the probability of the new
The CoM then transitions from stafe to C;. suppliers getting delayed is also higtiTherefore it is optimal
for the SMs to wait out the delay for high delay probabilities

IX. EMPIRICAL EVALUATION - .
The performance of the MDP-CoM reflects its sub-optimal

. we empir.ically eyaluate our.metlhods usinglithe; s;ljpply Chaltﬁ'%cision-making. In particular, it performs slightly werghan
m_tro_duced in Section Ill. We imp ementeql all of the mode_ the random policy for low delay probabilities. This is due to
W'th'_n the METEOR-S framework _descnbeo_l prewou_sly "Mhe SMi always choosing to change the supplier in response
Section IV. A method to represent inter-service coordorati to the delay and the CoM ensuring that the $Mhanges its
constraints such as ours, in WS-BPEL is given in [19]. As pal},,jier 100, For states whejehas already received the order,
of our evaluation, we first show that the value function of thﬁ"nis action is costly. Note that the random policy chooses to
M-MDP _model _(Sectlon VI-C) |s_monoton|c and Cc.m\./ergeﬁhange the supplier only some fraction of the times. Forelarg
over an increasing number of horizons. Naturally, this iepl delay probabilities, the MDP-CoM policy adapts to waitimg i
Fhat the policys™, of the PM also COnverges. The CONVErgenceise of a delay, and hence starts performing better than the
is refle(?ted_by the gradual flattening of the curves in the plp ndom policy. The performance of the hybrid approach is
shown in Flg: 9. Thoggh'we show the values for a spbset @ between that of the M-MDP and the MDP-CoM models,
the .lstates, this behavior is true for all the stz;tes. ,;Aduhfiily _as we may expect. By selecting to change the suppliers only
similar convergences are demonstrated by the value fUTCtiQ o it is optimal globally, the hybrid approach avoids some
of the MDP-CoM and the hybrid models as well. of the pitfalls of the decentralized approach. For an evagela

300 cost of waiting out the delay, as in Fig. 10(c), the MDP-CoM

—--—0-D-CS-R, O-D-CS-R

e — OD-CS-R, O-D-CS-R policy chooses to change the supplier up to a delay probabili
- ~ =~ OD-CS-R,0D-CS-R of 0.5, after which the policy chooses to wait when delayed.
i —-—-0D-CS-R, OD-CSR . . .
009 NN OD-CS-R. O-D-CSR As we mentioned previously, a large delay probability means

that the expected cost of changing the supplier is largessinc
the new supplier may also be delayed with a high probability.
Hence, the policy chooses to wait out the delay, rather than
change the supplier and risk being delayed again.
In summary, the centralized M-MDP model for the process
Horizon (n) manager performs the best since it has complete knowledge
Fig 0. C  the value function of the M-MDP model of the states, actions, and costs of aII.the SMs. This support
9. 9. Lonvergence of the value function of the mo e'Rur Thm. 1. The MDP-CoM does slightly worse than the
The second part of our evaluation focuses on studying the . L ) .
. random policy for low delay probabilities, but improves its

. . . - n;gen‘ormance thereafter. The maximum difference between
volatility. These environments are characterized by iasireg its average behavior and that of the globally optimal M-

probabilities of occurrence of an external event such a$ag/,deMDP model is 234.8 which is much less than the difference

and increasing penalties to the manufaf:turer for walt.ln'g 0galculated using our theoretical error boungl= 2784.6. This
the delay. Our benchmark (null hypothesis) imadompolicy . .
s because of the worst case nature of our error bound agalysi

n which each SM randomly §elects between its aqtlons, andl"l];e hybrid approach does better than the MDP-CoM and the
it elects to change the supplier, all SMs follow suit to eesur

product compatibility. Our methodology consisted of phajt random pohc;_/, but worse than the M-MDP. We also point out
. > L that the maximum percentage improvement of our M-MDP
the average costs incurred by executing the policies gtatera : . .
. : o tfnodel in comparison to the random policy was 31.3%.
by solving each of the models for different probabilities o Finall dd th lability of dels 1o |
receiving a delay event and across varying costs of waitin 'Ea Y fWSeMa V\r/essh et?]cat_a “tyko otur mlo etﬁ’ g_ﬁargert
out a delay. The costs were averaged over a trial of 1000 r ero s. Vve show the ime taken {o solve the difteren
and each trial was performed 10 times. 4 o .
We show the plots for the different costs of waiting in ca We assume for simplicity that the new suppller_also has the same
€S ' g p A .g S;?robablllty for being delayed. In general, different suerd would have
of a delay in Fig. 10. We computed all of our policies for 24ifferent probabilities of being delayed in meeting the orde
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Fig. 10. Line plots showing the average costs incurred for increasing probabditigee order being delayed and increasing costs of waiting
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