
Optimal Adaptation in Web Processes with
Coordination Constraints

Kunal Verma, Prashant Doshi, Karthik Gomadam, John Miller, and Amit Sheth
LSDIS Lab., Dept. of Computer Science

University of Georgia, Athens, GA 30602
{verma,pdoshi,karthik,jam,amit}@cs.uga.edu

Abstract— We present methods for optimally adapting Web
processes to exogenous events while preserving inter-service
constraints that necessitate coordination. For example, in a
supply chain process, orders placed by a manufacturer may get
delayed in arriving. In response to this event, the manufacturer
has the choice of either waiting out the delay or changing the
supplier. Additionally, there may be compatibility constraints
between the different orders, thereby introducing the problem of
coordination between them if the manufacturer chooses to change
the suppliers. We adopt the paradigm that an abstract Web
process flow is pre-specified, and service managers are tasked
with interacting with the actual Web services. We focus on the
decision making models of the managers who must adapt to
external events while satisfying the coordination constraints. We
use Markov decision processes as the underlying models for the
managers, and show how they can be formulated offline resulting
in policies that guide the managers’ actions. Our methods range
from being centralized and globally optimal in their adaptation
but not scalable, to decentralized that is suboptimal but scalable
to multiple managers. We also develop a hybrid approach that
improves on the performance of the decentralized approach with
a minimal loss of scalability.

I. I NTRODUCTION

Recently, there is growing interest in using Web services
(WS) as the key building blocks for creating inter- and
intra-enterprise business processes. They use the services-
oriented architecture [5] as a point of departure, and are
called Web processes. Previous work on Web processes has
focused largely on configuring or formulating the process flow
[1], [2], [6], [22] and developing the associated languages
for representing the Web processes [14]. In addition to the
problem of composition of Web processes, we must also
address the challenges of adaptation, optimality, and recover-
ability. Together these properties contribute toward moreagile
and dynamic Web processes. For example, consider a supply
chain process where a manufacturer is awaiting merchandise
that was ordered previously. If the shipment is delayed, the
manufacturer may wait out the delay or it’s process may
adapt by possibly canceling the order and choosing a different
supplier.

In this paper, we address the problem of optimally adapting
Web processes to external events. Adaptation in processes is
further complicated in the presence of constraints between
services. An example constraint is when the merchandise
ordered at different points in the process must be compatible.
For example, in a supply chain process that involves ordering
computer parts, RAM that is ordered from a memory chip
provider service must be compatible with the motherboard that
is ordered from another service. Hence, changing the service
that provides RAM (perhaps due to a delay in satisfying the

order) may need to becoordinatedwith a change in the service
that provides the motherboard.

We present three methods for adapting the process in the
face of external events and coordination constraints between
participating services. Our methods improve on the previ-
ous work by accounting for the uncertainty of events and
emphasizing cost-based optimality of decisions. We adopt
the paradigm that abstract process flows are pre-defined and
proxies, whom we call service managers (SMs), are used
to discover and interact with the required Web services [2],
[12]. We focus on the decision models for the managers
and for this purpose use stochastic optimization frameworks
called Markov decision processes (MDPs) [15]. The input
to our models is a stochastic state transition machine which
represents the possible transitions for each SM, and the costs
of the transitions. In our first method, we adopt a global view
of the process and formulate a multi-agent MDP model for
controlling the SMs. This centralized approach guaranteesthat
the adaptation in response to external events, while respecting
the coordination dependencies is globally optimal. However,
this approach does not scale well to a large number of SMs.
To address the scalability issue, we present a decentralized
approach by formulating a MDP model for each individual
SM in the process and a mechanism for coordinating be-
tween the SMs. However, this approach is no longer globally
optimal, and we provide a worst case bound for the loss
in optimality. A natural extension is to develop a hybrid
approach that follows a middle path between the centralized
and decentralized approaches. We briefly outline one such
hybrid approach and demonstrate that its performance is better
than the decentralized one. We experimentally evaluate our
methods using an example supply chain scenario, and analyze
the different decisions that are made by the managers for
varying dynamism in the environment.

II. RELATED WORK

Much of the earlier work on adaptation concentrated on
manually changing traditional processes at both the logic and
instance levels. In [9], [16] graph based techniques were used
to evaluate the feasibility and correctness of changes in the
control flow of running instances. Ellis et al. [7] used petri-
nets for formalizing the instance level changes. In a somewhat
similar vein, Aalst and Basten [18] proposed a petri-net based
theory for process inheritance which categorized the typesof
changes that do not affect other interacting processes. More
recently, Muller et al. [13] used event-condition-action rules
to make changes in running instances. None of these papers
have considered the issue of long term optimality of the

adaptation, as we do with the help of stochastic optimization
frameworks. Our work also addresses the added complexity
of inter-service dependencies in a process. Isolated attempts
to address inter-task dependencies in processes include [4] in
which dependencies at the transactional level were enforced
using scheduling. In this work, the focus was on generating
feasible schedules without emphasis on being optimal. This
and other works [10], [17] used task skeletons to represent
the transactional semantics of databases and Web services.Our
use of probabilistic finite state machines (Markov chains) is a
generalization of the task skeletons as used previously.

III. E XAMPLE : SUPPLY CHAIN

Processes must continuously adapt to stimuli from a dy-
namic environment to remain optimal. The adaptation is
further complicated when different parts of the process are
inter-dependent and must coordinate with each other. In order
to motivate this problem, consider Dell’s supply chain process,
as presented in [8]. As pointed out in [8], it is crucial for
Dell to manage optimal inventory levels of suppliers’ inventory
centers called revolvers. Dell incurs significant costs if parts in
the revolvers run out and its computer production is delayed.
On the other hand, a surplus of parts is detrimental to the
suppliers. Clearly, an adaptive supply chain process is needed
that accountsfor delays and switches suppliers if the risk of
production delay outweighs the cost of changing suppliers.

We focus on a small but interesting component of the
supply chain to illustrate our methods and evaluate them.
We consider the supply chain process of a computer manu-

AssembleStart

Order MB

Order RAM

compatible

Supplier Order

Wait for

Delivery

Received

Order

received

Delayed

Order

delayed

Optimal to

change

supplier

Optim

al to

waitOrder

received

Details of

interaction with

supplier

Fig. 1. An example supply chain process of a computer manufacturer.

facturer which operates on minimal inventory, and therefore
incurs significant costs if its order is delayed. The computer
manufacturer typically orders in bulk different computer parts
from different suppliers. Since the parts must be assembled
into a single computer, they must be compatible with each
other. For example, the RAM must inter-operate with the
motherboard(Fig. 1). Therefore, if the delivery of the RAM
is delayed and the manufacturer chooses to change the RAM
supplier, the supplier of the motherboard must also be changed
to preserve the compatibility constraint.1

As an example of the type of choice involved in this process,
in deciding to change the RAM supplier the manufacturer
must take into account the consequences in terms of cost of
ordering the motherboard from a new compatible supplier too.
Of course, the cost of switching suppliers will vary with the
state of the process. For example, if the delivery of the RAM
is delayed and the motherboard has arrived, then a decision
to change the RAM supplier would entail returning back the

1It’s possible that the RAM from a new supplier might be compatible with
the existing motherboard, or the same RAM supplier can provideanother
compatible RAM in time. However, to focus on the coordination constraint,
we do not consider these alternatives, but they can easily beaccommodated.

motherboard and changing the motherboard supplier. Such a
decision might prove more costly than waiting out the delay
in receiving the RAM. The problem is to adapt optimally to
the external events like delay while respecting the constraints.

IV. W EB PROCESSARCHITECTURE

We adopt METEOR-S [2], [21] as the services-oriented
architecture, within which we implement the Web process.
In this section, we briefly outline the relevant components of
the architecture, and refer the interested reader to [2], [21]
for further details. METEOR-S creates a virtual layer over a
WS-BPEL [14] Web process engine that allows dynamic con-
figuration and run-time execution ofabstractWeb processes.
This is done with the help of an execution environment and a
configuration module. The execution environment consists of
SMs that control the interaction with a particular discovered
WS(s). An optional process manager (PM) is responsible for
global oversight of the process. From the implementation point
of view, when the process engine makes a call to a WS –
described using WSDL-S [3] – it is routed to the SM. Based on
the semantic template associated with the call, the SM utilizes
the configuration module to discover services that match the
template, and identify the compatible sets.

While the SMs in METEOR-S exhibit the capabilities of
dynamic discovery and binding of WSs to abstract processes
and possess some recovery capabilities from service failures,
they are unable to adapt to logical failures in their interactions
with WSs. Logical failures include domain specific application
level failures such as a delay in delivery of ordered goods ina
supply chain process. In this paper, we present approaches that
allow the METEOR-S framework to adapt to logical failures.

V. BACKGROUND: MARKOV DECISION PROCESSES

Markov decision processes (MDPs) [15] are well known and
intuitive frameworks for modeling sequential decision making
under uncertainty. In addition to modeling the uncertaintythat
pervades real world environments, they also provide a way to
capture costs and thereby guarantee cost-based optimalityof
the decisions. An MDP is formally a tuple:

MDP = 〈S, PA, T,C,OC〉

where S is the set of states of the process.PA : S →
P(A) is a function that gives the set of actions permissible
from a state. Here,A is the set of possible actions and
P(A) is its power set.T : S × A × S → [0, 1] is the
Markoviantransition function which models the probability of
the resulting state on performing a permitted action from some
local state (Pr(s′|s, a)). C : S × A → R is the cost function
which gives the cost of performing an action in some state of
the process. The parameter,OC, is the optimality criterion. In
this paper, we minimize the expected cost over a finite number
of steps,n ∈ N, also called the horizon. Additionally, each unit
of cost incurred one step in the future is equivalent toγ units
at present.γ ∈ [0, 1] is called the discount factor with lower
values ofγ signifying less importance on future costs.

We solve the MDP offline to obtain apolicy. The policy is a
prescription of the action that is optimal given the state ofthe
process and the number of steps to go. Formally, a policy is,
π : S×N → A whereS andA are as defined previously, andN

is the set of natural numbers. The advantage of a policy-based
approach is that no matter what the state of the process is,

the policy will always prescribe the optimal action. In order
to compute the policy, we associate each state with a value
that represents the long term expected cost of performing the
optimal policy from that state. LetV : S × N → R be the
function that associates this value to each state. Then,

Vn(s) = min
a∈PA(s)

Qn(s, a)

Qn(s, a) = C(s, a) + γ
∑

s′

T (s′|s, a)Vn−1(s
′) (1)

Note that∀s∈S , V0(s) = 0. Here,n ∈ N is the finite number
of steps to be performed. The optimal action from each state
is the one that optimizes the value function:

πn(s) = argmin
a∈PA(s)

Qn(s, a) (2)

VI. CENTRALIZED APPROACH: M-MDP

Our first approach adopts a global view of the Web process;
we assume that a central process manager (PM) is tasked
with the responsibility of controlling the interactions ofthe
SMs with the WSs. The advantage of adopting a centralized
approach to control is that we are able to guarantee global
optimality of the service managers’ decisions while respecting
the coordination constraints. We illustrate the approach using
Fig. 2

start

orderMB

orderRAM

assemble

SMi

SMj

Global

M-MDP PM

 Order

 Return

 Cancel

MB

Supplier

WS

 Order

 Return

 Cancel

RAM

Supplier

WS

Fig. 2. The PM does the global decision making for adaptation using
the M-MDP model.

A. Model

We model the PM’s decision problem as amulti-agentMDP
(M-MDP). M-MDPs generalize MDPs to multi-agent settings
by considering the joint actions of the multiple agents.

For the sake of simplicity, we consider two SMs,i and j.
Our model may be extended to more SMs in a straightforward
manner. We formalize the PM as a M-MDP:

PM = 〈S, PA, T,C,OC〉

where: • S is the set ofglobal states of the Web process.
Often it is possible to define the global state using a factored
representation where the factors are the SMs’ local states.

Definition 1 (Factored State):The global state space may
be represented in its factored form:S = Si × Sj . Here, each
global states ∈ S is, s = 〈si, sj〉, wheresi ∈ Si is the local
state (or the partial view) of SMi, and sj ∈ Sj is the local
state of SMj.

Definition 2 (Locally Fully Observable):A process is lo-
cally fully observable if each SM fully observes its own state,
but not the state of the other manager.

Since the global state is factored with each manager’s
local state as its components, the PM may combine the local
observations so as to completely observe the global state.
• PA : S → P(A) whereA = Ai × Aj is the set of joint

actions of all the SMs andP(A) is the power set ofA. The
actions include invocations of WS operations.PA(s) is as
defined previously in Section V. Using Definition 1, we may
decomposePA(s) as: PA(s) = PAi(si) × PAj(sj) where
PAi(si) andPAj(sj) are the sets of permitted actions of the
SMsi andj from their individual statessi andsj , respectively.
• T : S × A × S → [0, 1] is the transition function which

captures the global uncertain effect of joint actions of theSMs.
Often the actions of each SM affect only its own state and
the global state space being factored, we may decompose the
global transition function into its components.

Definition 3 (Transition Independence):The global transi-
tion function,T (s′|s, a), a ∈ PA(s), may be decomposed:

T (s′|s, a) = Pr(〈s′i, s
′
j〉|〈si, sj〉, 〈ai, aj〉)

= Pr(s′i|s
′
j , 〈si, sj〉, 〈ai, aj〉) · Pr(s′j |〈si, sj〉, 〈ai, aj〉)

= Ti(s
′
i|si, ai) · Tj(s

′
j |sj , aj)

(3)
whereTi, Tj are the individual SM’s transition functions,ai ∈
PAi(si), aj ∈ PAj(sj), ands′i ands′j are the next states of
i and j, respectively. In other words, we assume that,Pr(s′i
| 〈si, sj〉, 〈ai, aj〉 ,s′j) = Pr(s′i|si, aj), andPr(s′j | 〈si, sj〉,
〈ai, aj〉) = Pr(s′j |sj , aj), because each SM’s next state is
influenced only by its own action and its current state.
• C : S × A → R is the cost function. This function

captures the global cost of invoking the WSs by the SMs
based on the global state of the process. These costs may
be obtained from the service level agreements [11] between
the enterprise whose process is being modeled and the service
providers. In our example, the cost function would capture
not only the costs of invoking the WSs, but also the cost of
waiting for the delayed order and changing the supplier. As
we mentioned before, the possible change of supplier by one
SM must be coordinated with the other SM, to preserve the
product compatibility constraints. Coordination is enforced by
incurring a very high global cost if only one SM changes its
supplier. This high cost signifies the penalty of violating the
product compatibility constraint.
• OC is the optimality criterion as defined in Section V.
Let us utilize the M-MDP formalism introduced previously,

to model the supply chain example.
Example 1:An example global state of the process is

〈OD̄C̄SR̄
︸ ︷︷ ︸

i

, ODC̄SR̄
︸ ︷︷ ︸

j

〉. This global state denotes thati has

placed an order (O) that has not yet been delayed (D̄),
the supplier has not been changed (C̄S), and i has not yet
received the order (̄R). SM j has placed an order that has
been delayed but not changed its supplier. Possible actions
for each SM are the same:Ai = Aj = { Order (O), Wait
(W), ChangeSupplier (CS) }. The actionOrder denotes the
invocation of the relevant WS(s) of the chosen supplier to
place an order,Wait is similar to a no operation (NOP), and
ChangeSupplier signifies the invocation of the relevant WSs
to cancel the order or return it (if received), and select a
new compatible supplier. A partial cost function is shown in
Fig. 3(b), and the transition function for an individual SM is
discussed next.

si
1

si
8

si
2

si
6

si
5

si
4

si
7

si
3

W

W

W
W

O

CS

Rec

Del

Rec

CS

O

CS

CS

OO

0.45

0.35

0.85

(a)

State 〈W, W 〉 〈W, CS〉 〈CS, W 〉 〈CS, CS〉

〈OD̄C̄SR̄, OD̄C̄SR̄〉 0 550 550 350

〈OD̄C̄SR̄, ODC̄SR̄〉 200 450 750 250

〈OD̄C̄SR̄, OD̄C̄SR〉 0 550 550 350

〈OD̄C̄SR̄, ODC̄SR〉 0 460 550 260

〈ODC̄SR̄, OD̄C̄SR̄〉 200 750 450 250

〈ODC̄SR̄, ODC̄SR̄〉 400 650 650 150

〈ODC̄SR̄, OD̄C̄SR〉 200 750 450 250

〈ODC̄SR̄, ODC̄SR〉 200 710 450 160

〈OD̄C̄SR, OD̄C̄SR̄〉 0 550 550 350

〈OD̄C̄SR, ODC̄SR̄〉 200 450 750 250

〈OD̄C̄SR, OD̄C̄SR〉 -50 550 550 350

〈OD̄C̄SR, ODC̄SR〉 -50 460 550 260

〈ODC̄SR, OD̄C̄SR̄〉 0 550 460 260

〈ODC̄SR, ODC̄SR̄〉 200 450 460 160

〈ODC̄SR, OD̄C̄SR〉 -50 550 460 260

〈ODC̄SR, ODC̄SR〉 -50 460 460 170

(b)

Fig. 3. (a) A (probabilistic) state transition diagram illustrating the expanded transitionfunction,T E

i , for the SMi. Transitions due to actions
are depicted using solid lines, and these are deterministic. Exogenous events are shown dashed. For clarity, the occurrence of no event is not
shown. The numbers denote example probabilities of occurrence of theevents conditioned on the states. (b) The partial cost function for the
PM. We show the costs for the more interesting actions of waiting and changing the supplier, for a subset of the states. The cost function
penalizes those action combinations where only one SM changes the supplier thus violating the compatibility constraint.

B. Exogenous Events

In our example supply chain scenario, the manufacturer
must act in response to several events such as a notification
of delay from the supplier and a notification of receipt of the
order. In order to ensure that the SM responds to these events
optimally, they must be a part of our model. Since the events
are external to the Web process, we label them asexogenous.

In order to model the exogenous events, we perform two
steps: (1) We specify expanded transition functions for the
SMs i andj. In other words,TE

i : Si×Ai×Ei×Si → [0, 1],
whereEi is the set of mutually exclusive events, and rest of
the symbols were defined previously. For our example,Ei =
{Delayed, Received, None}. The expanded transition function
models the uncertain effect of not only the SM’s actions but
also the exogenous events on the state space. We show the
expanded transition function for the SMi in Fig. 3(a). (2) We
definea’priori a probability distribution over the occurrence of
the exogenous events conditioned on the state of the SM. For
example, letPr(Delayed|OD̄C̄SR̄) = 0.45 be the probability
that SM i’s order for RAM is delayed.

We obtain the transition function,Ti, that is a part of the
model defined in Section VI-A (see Eq. 3), by marginalizing
or absorbing the events. Formally,

Ti(s
′|s, a) =

∑

e∈Ei

TE
i (s′i|si, ai, e)Pr(e|si)

Here,TE
i is obtained from step (1) andPr(e|si) is specified as

part of the step (2) above. The marginalized transition function
for the SM i is shown in Fig. 4.

C. Global Policy Computation

Solution of the process manager’s model described in Sec-
tion VI-A results in a global policy, π∗ : S × N → A.
The global policy prescribes the optimal action that must be
performed by each SM given the global state of the Web
process and the number of steps to go. Computation of the
global policy is analogous to the Eqs. 1 and 2, withs being
the global state of the Web process,a the joint action of the
SMs, andT (s′|s, a) may be decomposed using Eq. 3. During
process execution, each SM sends its local state to the PM,

si
1

si
8

si
2

si
6

si
5

si
4

si
7

si
3

W

W

W

W

O

CS

CS

CS

CS

CS

O

CS

CS

O
O

0.45

0.35

0.85

0.2

0.2

W

W

0.35

0.45

0.15

0.15

W

0.85

Fig. 4. A (probabilistic) state transition diagram illustrating the
transition function,Ti, for the SM i. Some of the transitions due
to the actions are now non-deterministic. The numbers denote the
probabilities with which the associated transitions occur.

who uses the joint state to index into the global policy. The
prescribed actions are then distributed to the corresponding
SMs for execution.

While the centralized approach requires the specification of
a global model of the process, the advantage is that we can
guarantee the optimality of the global policy. In other words,
no other policy for controlling the SMs exists that will incur an
expected cost less than that of the global policy. Consequently,
the global policy resolves the coordination problem between
the SMs in an optimal manner. Theorem 1 formally states this
result. Due to the lack of space, the proof of this theorem is
given in [20].

Theorem 1 (Global Optimality): The global policy of the
PM, π∗, is optimal for the finite horizon discounted optimality
criterion.

Let us consider a Web process where there are,N > 2,
SMs. In the worst case, all the SMs may have to coordinate
with each other due to, say, the product compatibility con-
straints (Fig. 5(a)). For this case, Eq. 1 becomes,Vn(s) =

min
a∈PA(s)

Qn(s, a), wherea ∈ A, andA = Ai×Aj×Ak×. . .×

An. Here,Ai, Aj , Ak, . . . , An are the action sets of the SMs
i, j, k, . . . , n, respectively. More realistically, only subsets of

SMi

SMj

SMk

SMl

SMn

SMm

(b)(a)

SMi

SMj

SMk

SMl

SMn

SMm

Fig. 5. Example coordination graphs. (a) The worst case coordination
graph where all the SMs must coordinate with each other. (b) More
realistic case, where only subsets of SMs must coordinate.

the SMs may have to coordinate with each other, as shown in
Fig. 5(b). In this case,Vn(s) = min

a
Q1

n(s, 〈ai, aj , ak, al〉)

+ Q2
n(s, 〈am, an〉) = min

〈ai,aj ,ak,al〉
Q1

n(s, 〈ai, aj , ak, al〉) +

min
〈am,an〉

Q2
n(s, 〈am, an〉).

VII. D ECENTRALIZED APPROACH: MDP-COM

While adopting a global view of the process guarantees
a globally optimal adaptation and coordination between the
SMs, the approach does not scale well to many services
in the process. This is because the decision making by the
process manager must take into account the possible actions
of all the coordinating SMs. Of course, this is exponential
in the number of SMs. As we mentioned previously, in the
worst case this might involve all the SMs. In this section,
we present a decentralized approach that scales reasonably
well to multiple managers, but in doing so we lose the global
optimality of the adaptation. This approach is made possible
due to the properties of transition independence and local full
observability exhibited by the process.

Our approach is based on formulating a MDP model for
each individual SM, thereby allowing each SM to make its
own decision. We assume that all the SMs act at the same time
step, and actions of the other SMs are not observable. Since
coordination between the SMs that reflects the inter-service
dependency is of essence, we define a mechanism for ensuring
the coordination. Each SM, in addition to fully observing its
local state, also observes the coordination mechanism (CoM)
perfectly (Fig. 6).

receive

orderMB

orderRAM

assemble

Local

MDP
SMi

Local

MDPSMj

Coordination

Mechanism

 Order

 Return

 Cancel

RAM

Supplier

WS

 Order

 Return

 Cancel

MB

Supplier

WS

Fig. 6. Each SM locally decides its action in response to the events.
The SMs coordinate using a CoM that each observes perfectly.

A. Model

We model each SM’s decision making process as a MDP.
The MDP model for a SM, sayi, is:

SMi = 〈Si, PAi, Ti, Ci, OCi〉

where:• Si is the set of local states of the SMi. • PAi :
Si → P(Ai), gives the permissible actions of the SM for each
of its local states. An action may be the invocation and use
of a WS.• Ti : Si × Ai × Si → [0, 1], is the local transition
function. • Ci : Si × Ai → R, is the SM i’s cost function.
This function gives the cost of performing an action from some
state of the SM.• OCi is the SMi’s optimality criterion. In
this paper, we assume that each of the SMs optimizes w.r.t. a
discounted finite horizon, though in general they could have
different optimality criteria. For our supply chain example, the
MDP for the SMi is given below.

Example 2:An example local state of the SM isODC̄SR̄

which denotes thati has placed an order that has been delayed,
but it has not changed its supplier. Possible actions for theSM
i are: Ai = { Order (O), Wait (W), ChangeSupplier (CS)
}. The semantics of these actions are as defined previously in
Example 1. The transition function was shown previously in
Fig. 4, and the partial cost function is shown in Table. I.

State W CS

OD̄C̄SR̄ 0 200

ODC̄SR̄ 250 150

OD̄C̄SR -50 250

ODC̄SR -50 175
TABLE I

A PARTIAL COST FUNCTION FOR THESM i.

The exogenous events that include a delay in receiving the
order and a notification of receipt of the order, are handled in a
similar manner as described in Section VI-B. In other words,
we expand the SM’s local transition function to include the
events. As we mentioned before, the events may alter the local
state of the SM.

B. Coordination Mechanism

In our decentralized approach, each SM arrives at its own
decision on how to best respond to the exogenous events. Since
the decision making is local, we must define a mechanism
to ensure coordination between the SMs in order to preserve
the coordination constraint. As an example, if the SM that is
ordering RAM decides to change its supplier, then the SM
ordering the motherboard must follow suit, no matter whether
it’s an optimal decision for the other SM. This is precisely the
source of the loss in optimality for our decentralized approach.

While mechanisms for coordinating between the SMs man-
ifest in various forms, one such mechanism is a finite state
machine (FSM), whose state is perfectly observable to all the
SMs. We may define the FSM to have two general states:
an uncoordinated(U) state and acoordinated(C) state. The
state of the FSM signifies whether the SMs must coordinate.
Formally, the FSM is a tuple〈Y,A, τ〉, whereY is the set of
states of the FSM,Y = {U, C}. A is the set of joint actions
of the SMs defined previously. Here,τ : Y × A × Y → [0, 1]
is the transition function of the FSM. Initially the actionsof
the SMs are uncoordinated – each SM is free to follow the
optimal action conditioned on its local state. We assume that
if a SM decides to change the supplier, it must signal itsintent
first. 2 When any SM signals its intent to change the supplier,
the FSM transitions to the coordinated state. When the FSM
is in this state, all SMs are required to change their suppliers

2This behavior would require an additional action denoting the intent, which
we address later.

immediately. Their actions will also reset the FSM back to the
uncoordinated state. We show the FSM in Fig. 7.

U C

 < intent,* > < *,intent >

< *,* >
< CS , CS >

< ?,? >

Fig. 7. FSM for coordinating between the SMs. Transitions (solid
arrows) are caused by the joint actions of the SMs. ’*’ indicates any
action of a SM, while ’?’ indicates the remaining actions. The dashed
arrow gives the action rule for each SM when the FSM is in that state.

C. Expanded Model

To ensure coordination, the CoM must be included in the
SM’s decision making process. We do this by combining the
MDP model that was defined previously in Section VII-A,
with the CoM and call the new model, MDP-CoM. Within
the MDP-CoM, the state space is expanded to include the
states of the CoM as well:̂Si = Si × Y . The action choices
available to the SM are,A′

i= Ai ∪ {Intent}. To ensure that the
SM changes the supplier iff the FSM is in the coordinated (C)
state, we define the function,̂PAi(〈∗, C〉) = CS, and remove
the choice of changing the supplier when the FSM is in the
uncoordinated state,̂PAi(〈si, U〉) = PAi(si)/CS. Here, ’*’
stands for any local state of the SMi.

The transition function is the joint defined as:T̂i : Ŝi×Ai×
Ŝi → [0, 1]. Here,

T̂i(〈s
′
i, y

′〉|ai, 〈si, y〉) = Pr(s′i|y
′, ai, 〈si, y〉)Pr(y′|ai, 〈si, y〉)

= Ti(s
′
i|ai, si)Pr(y′|ai, y)

(4)
Since the next state of the CoM depends on actions
of both the SMs, and the SMi does not observe the
other SM’s actions, we must average over the other’s ac-
tions: Pr(y′|a, y) =

∑

aj
Pr(y′|ai, aj , y)Pr(aj |ai, y) =

∑

aj
τ(y′|ai, aj , y)Pr(aj |y)

When the state of the CoM isC, the SM i knows that
everyone must change their respective suppliers, and therefore
Pr(aj = CS|y = C) = 1. On the other hand, when the
state isU , we assume thati has no knowledge of the other’s
decision making model and therefore assumes that each of
SM j’s actions are equally probable. The cost function,Ĉi :
Ŝi×Ai → R, gives the cost of acting from the combined local
state and the state of the CoM. However, for our purposes, the
state of the CoM does not matter in deciding the cost.

D. Local Policy Computation

We associate with each local state of the SM and the state
of the CoM, a value function that gives the expected cost
of following an optimal policy from that state. Equation 1
forms the basis for computing the value function, while Eq. 2
computes the optimal policy for the MDP-CoM model,πi :
Ŝi × N → Ai. Note that in these equations, we use the
expanded model described in Section VII-C.

While the decentralized approach scales well for multiple
SMs since each SM does its own decision making, the trade off
is our inability to guarantee global optimality. This is because,
a SM’s decision does not take into account the state, actions,
and costs of the other SM. For the supply chain example, SM
i’s intent to change the supplier would necessitate a change
of supplier forj as well irrespective of the fact that the action

may not be optimal forj. We calculate a bound for the error
that would be introduced in this case. Letǫn be the error
bound, then,ǫn = ||V i

n−V̂ i
n||∞, where||·||∞ is the max norm,

V i
n is the value function for the MDP model, and̂V i

n is the
value function for the MDP-CoM model. The difference can
be bounded as,ǫn =

(Ci,max−Ci,min)(1−γn)
1−γ

, whereCi,min and
Ci,max are the least and maximum costs, respectively. Note
that a SM may suffers the maximum loss in optimality when
trying to respect the coordination constraint. Due to lack of
space, we give the proof of this error bound in [20]. In order to
calculate the loss with respect to the globally optimal policy,
for the simple case whereC(s, a) = Ci(si, ai) + Cj(sj , aj),
the error boundǫn also represents the worst case loss from
global optimality. We note that this error bound does not scale
well to many SMs. In general, forN SMs, the worst case error
bound is(N − 1)ǫn.

VIII. H YBRID APPROACH: H-MDP-COM

Our hybrid approach uses the MDP-CoM model as a point
of departure, but improves on its error bounds by allowing
the PM to step in during runtime and exercise some control
over the SMs’ actions when coordination is required. For
example, when any SM intends to change the supplier, the
PM decides whether or not to allow the action based on its
global optimality for all the SMs.

A. Model

In order to enable the PM’s decision, each SM sends to the
PM, its action-value function for the optimal action as well
as the other action alternatives. For the supply chain example,
when an SM, sayi, declares its intent to change its supplier,
it must send to the PM,Qi

n(〈si, y〉, CS) andQi
n(〈si, y〉,W),

wheresi andy are the current states of the SMi and the CoM,
respectively, andQi

n is the action-value function. We denote
this action assendQ, and is added to the previously defined
space of actions of each SM.3 This sequence of behavior is
enforced by the CoM, as shown in Fig. 8. Since the decision
making is shared with the PM, the transitions of the CoM are
also dependent on the PM’s actions. Specifically, at stateM
of the CoM, if the PM decides that all the SMs should change
their suppliers, the mechanism will transition to stateC2. On
the other hand, the PM may ask the SM that declared its intent
to wait out the delay represented by stateC1 of the CoM.

U
< intent,*,* >

< *,intent,* >

< sendQ , sendQ >

< ?,? >

M

C1

C2

< sendQ,sendQ,W >

< sendQ,sendQ,CS >

< *,*,*>

< *,*,* >

< W >

< CS , CS >

Fig. 8. The CoM for our hybrid approach.

B. Hybrid Policy Computation

Computing the local policy for each SM is analogous to
the corresponding computation in the MDP-CoM model. The
primary difference is in the generation of the local transition

3We assume that the SMs are able to communicate with the PM without
any loss of information, though there may be a communication cost.

function, T̂i, shown in Eq. 4 that encompasses the transitions
of the CoM. In addition to averaging over the actions of the
other SM,i must also average over the PM’s possible actions.
However, the averaging is considerably simplified when we
observe that the PM’s action matters only when the CoM is
in the M state. The net result is a local policy which defers
the deliberation over the coordinating action to the PM.

The issue remaining to be resolved is the runtime decision
process of the PM, when any of the SM declares its intent to do
a coordinating action. For our example, ifi does so, then the
PM opts for aCS, if Qi

n(〈si,M〉, CS)+Qj
n(〈sj ,M〉, CS) >

Qi
n(〈si,M〉,W) + Qj

n(〈sj ,M〉, a∗
j), wherea∗

j is the SMj’s
optimal action at〈sj ,M〉. For this case, the CoM transitions
from stateM to C2. Otherwise, the PM instructsi to simply
wait out the delay (W), because this is less expensive globally
(in the long term) than all the SMs changing their suppliers.
The CoM then transitions from stateM to C1.

IX. EMPIRICAL EVALUATION

We empirically evaluate our methods using the supply chain
introduced in Section III. We implemented all of the models
within the METEOR-S framework described previously in
Section IV. A method to represent inter-service coordination
constraints such as ours, in WS-BPEL is given in [19]. As part
of our evaluation, we first show that the value function of the
M-MDP model (Section VI-C) is monotonic and converges
over an increasing number of horizons. Naturally, this implies
that the policy,π∗, of the PM also converges. The convergence
is reflected by the gradual flattening of the curves in the plot
shown in Fig. 9. Though we show the values for a subset of
the states, this behavior is true for all the states. Additionally,
similar convergences are demonstrated by the value functions
of the MDP-CoM and the hybrid models as well.

-300

-200

-100

0

100

200

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Horizon (n)

V
al

u
e

(V
)

O¬D¬CS¬R, O¬D¬CS¬R

OD¬CS¬R, O¬D¬CS¬R

OD¬CS¬R, OD¬CS¬R

OD¬CS¬R, OD¬CSR

OD¬CS¬R, O¬D¬CSR

Fig. 9. Convergence of the value function of the M-MDP model.
The second part of our evaluation focuses on studying the

adaptive behaviors of our models in environments of varying
volatility. These environments are characterized by increasing
probabilities of occurrence of an external event such as a delay,
and increasing penalties to the manufacturer for waiting out
the delay. Our benchmark (null hypothesis) is arandompolicy
in which each SM randomly selects between its actions, and if
it elects to change the supplier, all SMs follow suit to ensure
product compatibility. Our methodology consisted of plotting
the average costs incurred by executing the policies generated
by solving each of the models for different probabilities of
receiving a delay event and across varying costs of waiting
out a delay. The costs were averaged over a trial of 1000 runs
and each trial was performed 10 times.

We show the plots for the different costs of waiting in case
of a delay in Fig. 10. We computed all of our policies for 25

steps to go. When the cost of waiting for each SM in response
to a delay is low, as in Fig, 10(a), all of our models choose to
wait out the delay. For example,π∗

n (〈ODC̄SR̄, ODC̄SR̄〉)
= 〈W,W 〉, and πi

n(〈ODC̄SR̄, U〉) = πj
n(〈ODC̄SR̄, U〉) =

W . Of course, the random policy incurs a larger average cost
since it randomizes between waiting and changing the suppli-
ers. When the penalty for waiting out the delay is 300 which is
greater than the cost of changing the supplier (Fig. 10(b)),the
behaviors of the models start to differ. Specifically, due toits
global view of the process, the M-MDP model does the best –
always incurring the lowest average cost. For low probabilities
of the order being delayed, the M-MDP policy chooses to
change the supplier in response to a delay, since it’s less
expensive in the long term. However, as the chance of the order
being delayed increases, the M-MDP policy realizes that even
if the SMs change the suppliers, the probability of the new
suppliers getting delayed is also high.4 Therefore it is optimal
for the SMs to wait out the delay for high delay probabilities.
The performance of the MDP-CoM reflects its sub-optimal
decision-making. In particular, it performs slightly worse than
the random policy for low delay probabilities. This is due to
the SM i always choosing to change the supplier in response
to the delay and the CoM ensuring that the SMj changes its
supplier too. For states wherej has already received the order,
this action is costly. Note that the random policy chooses to
change the supplier only some fraction of the times. For larger
delay probabilities, the MDP-CoM policy adapts to waiting in
case of a delay, and hence starts performing better than the
random policy. The performance of the hybrid approach is
in between that of the M-MDP and the MDP-CoM models,
as we may expect. By selecting to change the suppliers only
when it is optimal globally, the hybrid approach avoids some
of the pitfalls of the decentralized approach. For an even larger
cost of waiting out the delay, as in Fig. 10(c), the MDP-CoM
policy chooses to change the supplier up to a delay probability
of 0.5, after which the policy chooses to wait when delayed.
As we mentioned previously, a large delay probability means
that the expected cost of changing the supplier is large since
the new supplier may also be delayed with a high probability.
Hence, the policy chooses to wait out the delay, rather than
change the supplier and risk being delayed again.

In summary, the centralized M-MDP model for the process
manager performs the best since it has complete knowledge
of the states, actions, and costs of all the SMs. This supports
our Thm. 1. The MDP-CoM does slightly worse than the
random policy for low delay probabilities, but improves its
performance thereafter. The maximum difference between
its average behavior and that of the globally optimal M-
MDP model is 234.8 which is much less than the difference
calculated using our theoretical error bound,ǫn = 2784.6. This
is because of the worst case nature of our error bound analysis.
The hybrid approach does better than the MDP-CoM and the
random policy, but worse than the M-MDP. We also point out
that the maximum percentage improvement of our M-MDP
model in comparison to the random policy was 31.3%.

Finally, we address the scalability of our models to larger
number of SMs. We show the time taken to solve the different

4We assume for simplicity that the new supplier also has the same
probability for being delayed. In general, different suppliers would have
different probabilities of being delayed in meeting the order.

Cost of Waiting = 200

900

1300

1700

2100

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Probability of delay

A
ve

ra
g

e
C

o
st

M-MDP

Random

Hyb. MDP

MDP-CoM

(a)

Cost of Waiting = 300

900

1300

1700

2100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Probability of delay

A
ve

ra
g

e
C

o
st

M-MDP

Random

Hyb. MDP

MDP-CoM

(b)

Cost of Waiting = 400

900

1300

1700

2100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Probability of delay

A
ve

ra
g

e
C

o
st

M-MDP

Random

Hyb. MDP

MDP-CoM

(c)

Fig. 10. Line plots showing the average costs incurred for increasing probabilitiesof the order being delayed and increasing costs of waiting
for the order in response to the delay. The vertical lines in each plot showthe standard deviations.

1

10

100

1000

10000

2 3 4 5
Number of Service Managers

T
im

e
(m

s)

M-MDP

Hyb. MDP

MDP-CoM

Fig. 11. Run times for solving the models and generating the policies.
The times were computed on a PIV 3GHz, 1 GB RAM, and Win XP.

models in a histogram plot, Fig. 11, for increasing number
of SMs. As we mentioned previously, the complexity of the
M-MDP model is exponential with respect to the number of
SMs. This is demonstrated by the exponential increases in
time taken for computing the M-MDP policy as the number
of SMs increases from 2 to 5. In comparison, the time taken
to solve the MDP-CoM and the hybrid models increases
linearly. For the latter models, we report the total time taken
to compute the policies for all the SMs. More realistically,
for the decentralized and the hybrid approaches, the models
for the SMs may be solved in parallel, and hence there is no
increase in the net run times. Note that the CoM also scales
well to multiple SMs. Specifically, no increase in the number
of states of the FSM is required for more SMs, though the
communication overhead increases.

X. CONCLUSION

As businesses face more dynamism and processes become
more complex, methods that address adaptation while pre-
serving the complex inter-service constraints have gained
importance. Past approaches to this problem have tackled ei-
ther adaptation to exogenous events or enforcing inter-service
constraints, but not both. Additionally, these approacheshave
ignored optimality considerations. In this paper, we presented
a suite of stochastic optimization based methods for adapting
a process to exogenous events while preserving simple coor-
dination constraints. These methods were presented withinthe
METEOR-S framework of Web processes. In our first method,
we adopted a global view of the process and formulated the
M-MDP model that guaranteed global optimality in adapting
while preserving the constraints. To address the scalability
issue, we presented a decentralized approach, MDP-CoM, and
bounded its loss of optimality. Our third approach synergisti-
cally combines the two approaches so as to promote scalability
as well as curtail the worst case loss of optimality. We

experimentally evaluated their performances in environments
of varying dynamism.

REFERENCES

[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal,
and B. Srivastava, “A service creation environment based on end to end
composition of web services,” inWWW, 2005, pp. 128–137.

[2] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint driven
web service composition in meteor-s,” inSCC, 2004, pp. 23–30.

[3] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, A. Sheth, and K. Verma,
“Web service semantics - wsdl-s, w3c member submission.”

[4] P. C. Attie, M. P. Singh, A. P. Sheth, and M. Rusinkiewicz,“Specifying
and enforcing intertask dependencies,” inVLDB, 1993, pp. 133–145.

[5] F. Casati, S. Ilnicki, L. jie Jin, V. Krishnamoorthy, and M.-C. Shan,
“Adaptive and dynamic service composition in eflow,” inCAiSE, 2000.

[6] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, “Dynamic workflow
composition using markov decision processes,”J. of WS Research, vol. 2,
no. 1, pp. 1–17, 2005.

[7] C. Ellis, K. Keddara, and G. Rozonberg, “Dynamic change within
workflow systems,” inCOOCS, 1995, pp. 10–21.

[8] R. Kapuscinski, R. Zhang, P. Carbonneau, and R. Moore, “Inventory
decision in dell’s supply chain process,”Interfaces, vol. 34, no. 3, pp.
191–205, 2004.

[9] K. Kochut, J. Arnold, A. P. Sheth, J. A. Miller, E. Kraemer,I. B.
Arpinar, and J. Cardoso, “Intelligen: A distributed workflow system for
discovering protein-protein interactions,”J. of Dist. and Parallel Db,
vol. 13, no. 1, pp. 43–72, 2003.

[10] N. Krishnakumar and A. Sheth, “Managing hetergeneous multi-system
tasks to support enterprise-wide operations,”J. of Dist. and Parallel Db,
vol. 3, no. 2, pp. 155–186, 1995.

[11] H. Ludwig, A. Keller, A. Dan, R. King, and A. R. Franck, “Service
level agreement language for dynamic electronic services,”EC Research,
vol. 3, no. 1, pp. 43–59, 2003.

[12] D. Mandel and S. McIlraith, “Adapting bpel4ws for the semantic web:
The bottom-up approach to web service interoperation,” inISWC, 2003.

[13] R. Muller, U. Greiner, and E. Rahm, “Agentwork: a workflowsystem
supporting rule-based workflow adaptation,”J. of Data and Knowledge
Engg., vol. 51, no. 2, pp. 223–256, 2004.

[14] OASIS, “Web services business process execution language tc.”
[15] M. Puterman,Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley, New York, 1994.
[16] M. Reichert and P. Dadam, “Adeptflex-supporting dynamic changes of

workflows without losing control,”J. of Intelligent IS, vol. 10, no. 2,
pp. 93–129, 1998.

[17] M. Rusinkiewicz and A. P. Sheth, “Specification and execution of
transactional workflows,”Modern DBS, pp. 592–620, 1995.

[18] W. van der Aalst and T. Basten, “Inheritance of workflows: an approach
to tackling problems related to change,”Theoretical Computer Science,
vol. 270, no. 1-2, pp. 125–203, 2002.

[19] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, and J. Lee, “On accom-
modating inter service dependencies in web process flow composition,”
in AAAI Spring Symposium on Semantic Web Services, 2004, pp. 37–43.

[20] K. Verma, P. Doshi, K. Gomadam, J. Miller, and A. Sheth, “Optimal
adaptation in autonomic web processes with inter-service dependencies,”
LSDIS Lab, University of Georgia, Tech. Rep., 2005.

[21] K. Verma, K. Gomadam, A. Sheth, J. Miller, and zixin Wu, “Themeteor-
s approach for configuring and executing dynamic web processes,”
LSDIS Lab, University of Georgia, Tech. Rep., 2005.

[22] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng,
“Quality driven ws composition,” inWWW, 2003, pp. 411–421.

