
1

Knowledge Sharing, Coordinated Exception Handling, and
Intelligent Problem Solving for

Cross-Organizational Business Processes

PhD Dissertation

ZongWei Luo

January 19, 2001

Major advisor:
Professor Amit Sheth

Committee members:
Professor Krys Kochut
Professor John Miller

Professor Annette Poulsen
Professor Richard Watson

Invited committee member:
Dr. Christopher Bussler

Large Scale Distributed Information Systems Lab
Computer Science Department, The University of Georgia

mailto:luo@cs.uga.edu
http://lsdis.cs.uga.edu/~amit/
http://www.cs.uga.edu/~kochut/
http://www.cs.uga.edu/~jam/
http://www.terry.uga.edu/finance/facultyprofiles/poulsen/index.htm
http://www.terry.uga.edu/~rwatson
http://lsdis.cs.uga.edu/

2

KNOWLEDGE SHARING, COORDINATED EXCEPTION HANDLING, AND
INTELLIGENT PROBLEM SOLVING FOR CROSS-ORGANIZATIONAL

BUSINESS PROCESSES
Zongwei Luo

Under the Direction of Amit Sheth

To date, Workflow Management Systems (WfMSs) have been used to support enterprise-wide
business processes. With the advent of Internet commerce, business processes increasingly span
organizational boundaries. Consequently, workflow technology needs to be extended to support
such cross-organizational processes. Three of the most important research issues that arise in
developing solutions for cross-organizational business processes are -- process construction,
service fulfillment, and conflict resolution. This research primarily addresses the challenge of
conflict resolution in cross-organizational processes using exception-handling techniques.

Compared to extensive prior work on exception handling in programming languages and
distributed system, cross-organizational processes present new challenges. Key challenges are
the need to determine responsible party for handling exceptions, a variety of differences
between exception handling mechanisms of each WfMS participating in cross-organizational
processes, and lack of understanding or knowledge of outsourced or contracted processes.

This dissertation represents one of the earliest comprehensive researches on the topic of conflict
resolution in cross-organizational processes. We have proposed a detailed exception-handling
strategy, have implemented a prototype system, and have conducted experiments using realistic
applications to test its feasibility using a working WfMS. Our exception handling mechanism
bundles knowledge sharing, flexible process coordination, and intelligent problem solving to
handle exceptions in cross-organizational settings.

Novel research contributions presented here include:
1. Application of case-based reasoning (CBR) in exceptional problem solving for cross-
organizational business processes. Although CBR is used in handling exceptions inside a
WfMS before, it has not been used in cross-organizational setting in the past.
2. Use of a similarity-matching scheme in the CBR that includes exception, process, and
context matching in the case matching for handling exceptions across organizational
boundaries. In particular, we support partial match to identify relevant cases.
3. Process dynamics exploration for the construction of flexible exception handling processes
across organizational boundaries. Earlier work on dynamic workflow (flexible process) in
cross-organizational setting considers various process modes but do not discuss exception
handling.
4. A bundled strategy that provides more powerful solution than each of the individual
techniques of knowledge sharing, coordination, and intelligent problem solving.

INDEX WORDS: Knowledge sharing, Exception handling, Intelligent systems,
Business processes, Workflow, Inter-enterprise

3

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION

2. REVIEW OF LITERATURE

3. CROSS-ORGANIZATIONAL BUSINESS PROCESSES

4. EXCEPTIONS IN CROSS-ORGANIZATIONAL SETTINGS

5. EXCEPTION KNOWLEDGE SHARING

6. COORDINATED EXCEPTION HANDLING

7. INTELLIGENT PROBLEM SOLVING

8. METEOR ORBWORK Workflow Management System

9. EXCEPTION HANDLING SYSTEM

10. SYSTEM ANALYSIS AND CONCLUSIONS

REFERENCE

APPENDIX

4

KNOWLEDGE SHARING, COORDINATED EXCEPTION HANDLING, AND
INTELLIGENT PROBLEM SOLVING FOR CROSS-ORGANIZATIONAL

BUSINESS PROCESSES

ZONGWEI LUO

ACKNOWLEDGEMENTS

This research project is part of the group effort for the METEOR Workflow research at
the Large Scale Distributed Information System Laboratory (LSDIS) of the Computer
Science Department at the University of Georgia. First I wish to thank my major
advisor Dr. Amit Sheth for supporting me for my whole Ph.D. study. This support is
crucial to me to make this dissertation happen. Thank you very much! I also wish to
thank Dr. John Miller and Dr. Krys Kochut for your advice, encouragement and help.
Without them, it would have been impossible for me to finish this dissertation.

Special thanks should go to Dr. Annette Poulsen and Dr. Richard Watson for their
kindness of participating in my committee and all the advice and help you gave me.
Special thanks also go to Dr. Christopher Bussler for helping me pass the written
comprehensive examination. Without them, it would have been impossible for me to
finish my Ph.D. study.

I also wish to thank Dr. Myong Kang for the help he gave me and the generous support
he gave for the METEOR project.

In the mean time, I wish to thank my colleagues in the LSDIS Lab, Devashish Worah,
Zhongqiao Li, Jorge Cardoso, and Budak Arpinar. I appreciate your help and
collaboration!
Thank you all!

ZongWei Luo
January 19, 2001

5

CHAPTER 1

INTRODUCTION

Until several years ago, electronic trading was primarily involved with

expensive and specialized processes. This has hindered many businesses, especially

small businesses from participating in the electronic trading. Over the last few years,

the Internet has matured to provide a global networking infrastructure, accessible to a

huge and yet increasing number of business organizations and people [Forrester]. It

has transformed electronic trading into a viable and cost effective business solution:

Internet trading. Increased ease of Internet trading provides opportunities for

organizations to work more closely with other organizations for the exchange of

service, goods and information. Internet helps organizations establish intimate

business relationships with their customers and material suppliers [Forrester]. Through

participating in such electronic trading activities, these organizations can focus on their

core business, while lowering operational costs. Internet has also been utilized to

improve customer service. For example, web portals have been built as one-stop

shopping site for the customers. Online interactive-help systems have been built to

serve as help desk for the customers.

BUSINESS PROCESSES

The hyper-growth of Internet commerce affect businesses by making trading

processes more efficient and less expensive. There are usually three distinct types of

intermediate business trading processes: auction, bid, and catalog [Adam et al 1999].

Business entities and processes interact with each other through these intermediate-

trading processes, thus creating a dynamic trading process. These business-trading

6
processes, as an organic part of doing business, are being deeply integrated as a

critical component of almost all types of systems that support business activities [Sheth

et al 1999]. Workflow technology has long been considered as an essential technique

to integrate distributed and often heterogeneous applications and information systems

as well as to improve the effectiveness and productivity of these business processes.

In Internet commerce, business processes involving business-to-business and

business-to-customer activities usually span across multiple enterprises. This requires

that Workflow Management Systems (WfMSs) provide a set of tools supporting the

necessary services of workflow creation, workflow enactment, and administration and

monitoring of these business processes in cross-organizational settings. One

promising technique to realize such a support for cross-organizational business

processes is process outsourcing, usually through contracting [Ludwig and

Whittingham 1999].

Figure 1.1 A Cross-organizational workflow: telecommunication bandwidth outsourcing

7
The telecommunication business sector is one of the important fields for

studying cross-organizational business processes. In this sector, process-outsourcing

activities have been very common recently. It partly results from the telecommunication

sector deregulation. Many telecommunication infrastructure providers often contract

out their unused bandwidth to other telecommunication service providers. To facilitate

the bandwidth outsourcing, cross-organizational processes are used.

An example of such cross-organizational processes in telecommunication

sector is shown in Figure 1.1. In this example, a telecommunication infrastructure

provider, Level 3 (L3), has designed an all-IP network that is scalable and upgrade-

able. It offers on-demand bandwidth service to let contracted service providers (SP),

such as Internet Service Providers (ISP) and DSL providers, accommodate their

customers’ new data and voice applications. The interfaces to L3’s network

infrastructure are called Gateways. These gateway facilities provide co-location space

where Web-centric customers can physically locate their equipment and connect

directly to L3’s network. Gateways also house L3’s routers, transmission equipment,

soft-switches and advanced security to allow interconnections with other local and long

distance networks. L3’s direct customers are other service providers (SP). These SPs

sign contracts with L3 to use L3’s infrastructure. L3 also allows these SPs to change

their bandwidth according to their customers’ needs. L3 can either accept or reject the

requested bandwidth change. In case the request is rejected, the rejection response

must come within one minute. This requirement is usually specified in the Service

Level Agreement (SLA) between L3 and these SPs. The customers subscribe to use

L3’s infrastructure through these SPs (see Figure 1.2). When a subscribed customer

requests a connection to a third party, his SP has to route it to the Gateway through a

local network carrier. To do so, these SPs need to sign contracts with local network

carriers to reach their customers and route their customers’ connections. If the

8
customers’ connection requests exceed their SPs’ contracted bandwidth, the SPs can

request bandwidth upgrade to accommodate their customers’ needs.

Figure 1.2 A cross-organization workflow: customer connection request process

TARGETED PROBLEMS

One major difference between cross-organizational and enterprise-wide

business processes is that cross-organizational business processes are realized by

cooperating processes across organizational boundaries. Contracts are set up so that

these processes should meet these contracted cooperating requirements. However,

abnormal situations may occur, for example, when the cooperating requirements can

not be met. Abnormal situations in cross-organizational processes are classified as

follows.

9

• A contract cannot be fulfilled. For example, the bandwidth change service

routed by SPs can not be fulfilled by L3; therefore, SPs’ customers will get

busy signal due to traffic congestion.

• A contract may be compromised. For example, rejection response to the

customer’s bandwidth change can’t always happen within a minute. L3 asks

contracted SPs to allow the rejection response be given longer than a

minute.

• A contract needs to be modified. Due to sustained customer growth,

rejection responses to the customer’s bandwidth change can no long

happen within one minute. L3 negotiates with contracted SPs to change the

contract.

• A contract needs to be terminated before it expires. When L3 fails to fulfill

its obligation too often and a contracted SP may consider terminating its

contract before it expires.

In case any of these abnormal situations occur, they must be resolved so that

the outsourcing partnership can be maintained in the effort that both parties can benefit

from the outsourcing partnership. An example of such a conflict (exception) in this

telecommunication application is that the rejection response does not come within one

minute after the requested service is rejected. When this conflict (exception) occurs,

processes that span more than one organization are affected. We have identified the

problems in resolving such exceptions across organizational boundaries. They are

summarized in Table 1.1.

10
Table 1.1 Exception handling problems in cross-organizational settings

Problems

Some exceptions defined in one organization are not defined in

another organization.

The exception format may be different in different organizations

Specification

Some exceptions have different semantics or interpretations in

different organizations.

Some exceptions are local to an organization, even if they are

related to another organization, which is unaware of its

occurrence.

The exception propagation path is not well defined in cooperating

organizations.

Propagation

When an exception caused by one organization is detected by

another organization, it is possible that not enough information is

available to verify it.

Handling Different organization may have different understanding of an

exception. Thus the handling policy may be different.

Healthcare sector is another important field for studying cross-organizational

business processes, especially for exception handling. Let’s take a look at an infant

healthcare application to characterize the problems in exception handling (see Figure

1.3). This infant transportation application involves the transportation of a very low

birth weight infant of less than 750 grams, at or below 25-26 weeks gestation, from a

rural hospital located within 100 miles from the Neonatal Intensive Care Unit (NICU) at

the Medical College of Georgia (MCG). Such transportation usually takes up to 2.5

hours. In the ambulance there are two or three healthcare professionals who perform

11
different roles. During the transport the ambulance personnel perform standard

procedures to obtain medical data for the infant. This application involves three

organization domains, local hospital, ambulance, and NICU. The first step of this

application involves the task that allocates resources in the local hospital, such as

healthcare professionals, equipment, and so on. The last step is admission preparation

to the NICU.

Figure 1.3 Infant transport healthcare application

If exceptions are raised during the transport, corrective actions must take place.

The decision of the corrective procedures usually involves collaboration and

coordination between the ambulance personnel and the consultants at MCG’s NICU.

This application is very dynamic because the changes to the infant’s health status as

indicated by the vital signs such as the known risk factors may lead to changes in the

treatment plan. Such changes can occur rapidly. For example, a low weight infant can

12
dehydrate in as few as ten minutes while an adult would take at least several hours to

reach the same severity. Such changes to the infant’s status are modeled as

exceptions. Consider a “normal” treatment plan as shown in Figure 1.4. Occurrence

of heart murmur that is known as a risk factor related to cardiac disease would be

modeled as an exception (from the normally expected and correspondingly modeled

process). One way of handling such an exception is to change the process such that

the cardiovascular related task is performed earlier than what was originally planned.

Figure 1.4 Treatment cares during the transportation

This healthcare application raises several requirements for business process

support in cross-organizational settings.

• Exceptions are not avoidable in such an environment. An abnormal

situation can cause special attention for healthcare professionals. Those

abnormal situations should be resolved as soon as possible due to the

13
nature of this application -- newborn infant transport. Prior experience

gained in handling similar abnormal situations can facilitate the exception

resolution process. At the same time the set of exception handlers that

need to be checked, can be limited by capturing more process execution

context.

• The processes in this application are very dynamic. The events that drive

the dynamic change and evolution may often come from different

organizations. In many cases, the driven forces are exceptional situations.

Because these organizations often have contracts with each other, they are

also affected by such exceptional situations in other organizations. To

support coordination of such processes, a systematic way of workflow

evolution, including dynamic structure modifications should be worked out.

In our work, they are considered as possible exception handler candidates.

• To resolve exceptional situations, potential exception handling activities

may happen across organizational boundaries in this transport process,

e.g., the healthcare professionals on board may need advice from

specialists in the NICU. The advice is context based. The results from the

information exchange may affect the progress of the ongoing exception

handling process.

• The health professionals on board are not necessarily experienced in every

aspect of intensive care. A case repository used in the case-based

reasoning (CBR) based exception-handling system stores valuable

experience learned to help them make decisions. The experience should

be available and accessible to health professionals from different

organizations.

14
In this dissertation, we discuss a bundled solution to address the problems in

cross-organizational exception handling activities, such as heterogeneity, responsibility

determination, and black box effects. There are three major objectives in this approach

for exception handling in cross-organizational settings. The bundled solution achieving

these three objectives connects the following three components organically, thus

forming a sophisticated exception handling framework for handling exceptions in cross-

organizational settings.

• The first objective is to capture more context information and gain common

understanding in exception handling. By capturing more context information

of exception situations, possible alternative exception handlers can be

limited in dealing with exceptional situations. By reaching more common

understanding and sharing exception handling experience, exception

resolution processes can be facilitated. The exception handling knowledge

stored in a case repository can be shared among different organizations.

• The second objective is to understand the coordination challenges in the

exception handling process across organization boundaries. Business

processes belong to different organizations. An organization may have the

rights to access processes in other organizations. But this does not mean

that it has the necessary right to fully control them as it does to its own

processes. For example, workflow evolution, a good candidate to exception

handling, is not always available due to such organizational constraints.

That is, possible process modifications, along with other exception handler

candidates such as ignore, retry, workflow recovery, and so on, may

behave differently in cross-organizational exception handling processes.

• The third objective is to find a feasible intelligent problem solving technique

in resolving exceptional situations. Exceptional situations are generally very

15
complicated. Intelligent problem solving capability is usually a must for an

advanced exception handling system. In our work, a case-based reasoning

(CBR) based exception handling mechanism with integrated human

involvement is used to support exception-handling processes. This

mechanism enhances the exception handling capabilities through collecting

cases to capture experiences in handling exceptions, retrieving similar prior

exception handling cases, and reusing the exception handling experiences

captured in those cases in new situations. As stated in the first objective,

the exception handling knowledge is shared among organizations; the

actual case users are not necessarily the ones who have collected these

cases.

CONTRIBUTIONS

This dissertation represents one of the earliest comprehensive researches on

the topic of conflict resolution in cross-organizational processes. We have proposed a

detailed exception-handling strategy, have implemented a prototype system, and have

conducted experiments using realistic applications to test its feasibility using a

working WfMS. Our exception handling mechanism bundles knowledge

sharing, flexible process coordination, and intelligent problem solving to handle

exceptions in cross-organizational settings.

Novel research contributions presented here include:

1. Application of case-based reasoning (CBR) in exceptional problem

solving for cross-organizational business processes. Although CBR is used

in handling exceptions inside a WfMS before, it has not been used in

cross-organizational setting in the past.

2. Use of a similarity-matching scheme in the CBR that includes exception,

process, and context matching in the case matching for handling

16
exceptions

across organizational boundaries. In particular, we support partial match to

identify relevant cases.

3. Process dynamics exploration for the construction of flexible exception

handling processes across organizational boundaries. Earlier work on

dynamic workflow (flexible process) in cross-organizational setting

considers various process modes but do not discuss exception handling.

4. A bundling strategy that provides more powerful solution than each of the

individual techniques of knowledge sharing, coordination, and intelligent

problem solving.

Organization of this dissertation is as follows. In Chapter 2, we review related

work. In Chapter 3, we present our approach for modeling cross-organizational

business processes, our analysis of process dynamics, and our strategy of exception

handling. In Chapter 4, we discuss exceptions in cross-organizational business

processes. In Chapter 5, we present our approach of exception handling knowledge

sharing. In Chapter 6, we present our approach of process coordination for

constructing flexible exception handling processes in cross-organizational settings. We

also present our analysis of exception handling requirement in each of the process

coordination patterns. In Chapter 7, we present our approach of CBR based intelligent

problem solving. In Chapter 8, we discuss ORBWork runtime system. In Chapter 9, we

present our exception handling system and its implementation. In Chapter 10, we

present our analytic tool for analyzing CBR based exception handling system, impact

analysis, and experimental analysis. We also conclude this dissertation and present

possible future work in Chapter 10.

17

CHAPTER 2

REVIEW OF LITERATURE

Exception handling for business processes in cross-organizational settings is a

multi-disciplinary area. It involves almost all aspects of process definition, enactment

(including process interaction), monitoring, and administration. In this chapter, we

identify the research efforts and highlight the representative research results achieved

in the following four areas: (1) workflow exception handling, (2) adaptive workflow, (3)

advanced transaction models, and (4) cross-organizational business processes.

• Workflow exception handling. Workflow exception handling involves

exception masking and propagation. Many techniques have been proposed

to handle exceptional situations in workflows. To handle exceptions, many

classifications of exceptions have been made. Usually the exception

handling schemes are affected by the exception classifications. For

example, exceptions are usually classified in current literatures into either

expected or unexpected exceptions. For those unexpected exceptions, it is

claimed that they can only be handled with human involvement.

• Adaptive workflow. Due to foreseen and unforeseen situations workflow

management systems needs to adapt to the dynamic and uncertain

business environment. Among various situations that trigger workflow

dynamic modifications and evolution, exceptions are a major source, which

directly points where the WfMSs or workflow applications need to be

improved.

18

• Advanced transaction models. Their origin is related to database

technology. They are proposed to improve efficiency in long running

transactions. To deal with the problems in long running business

processes, people have tried to borrow this technology and tried to apply

them to support workflow transactions. In this context, the term of

transactional workflow was coined. The ideas of transactional workflow are

workflows should be able to recover and proceed in case of failures. Most

important techniques to support such workflow recovery and proceeding are

backward recovery, forward recovery, and compensation.

• Cross-organizational business processes. Facilitated by the Internet,

business processes deployed in various organizations have been inter-

connected to form process chains across organizational boundaries.

Sophisticated exception handling capability is a must for process

coordination systems to support such process chains. Research activities

have been reported on some basic issues of supporting cross-organization

business processes, such as contracting.

EXCEPTION HANDLING

Researchers and projects (e.g., METEOR [Krishnakumer and Sheth 1995],

[Luo et al 2000], and WAMO [Eder and Liebhart 1998]) have identified the importance

of incorporating the exception handling mechanism into WfMSs. The role of exceptions

in office information systems was discussed at length in [Saastamoinen1995]. The

author presented a theoretical basis, based on Petri-Net, for dealing with different

types of exceptions. This work is purely driven by organizational semantics rather than

by a workflow process model. In [Klein et al 1998], several work was presented on

workflow exception handling, which included using Event Condition Action (ECA) rules

to model expected exceptions, a general discussion about exceptions in systems

19
based on objected oriented databases. In [Klein et al 1998], a taxonomy for exceptions

in workflow systems was reported. This exception taxonomy combined with the

exception design pattern [Casati 1999] can be reused in our intelligent exception-

handling system to help measure the similarities among cases during case retrieval

and analysis. Since exceptional situations are often very complicated, the knowledge-

based approach is a good candidate for handling exceptions in an intelligent way by

using the methodologies developed in knowledge-based systems.

In [Hagen and Alonso 1998] an exception handling mechanism employing a

combination of programming language concepts and transaction processing

techniques was proposed. However, aborting or canceling a workflow task would not

always be appropriate or necessary in a workflow environment. Unlike a database

transaction, tasks in workflow systems could encapsulate diverse operations. The

nature of the business process can tolerate some errors so that an undo operation is

not always required. Therefore, the error handling semantics of traditional transactional

processing systems are too rigid for exception handling in workflow systems.

EXCEPTION HANDLING AND ADAPTIVE WORKFLOW

The work reported in [Berry, Myers 1998] explored how techniques from

intelligent reactive control could be leveraged to provide adaptable capabilities within

workflow technologies. The main artificial intelligence technologies used are agent

planning and procedural reasoning.

In [Deiters et al 1998], the authors differentiated two classes of exceptions,

known and unknown. To improve the business processes, they identified four

perspectives: incompleteness, informal aspects, and requirements for the distribution

of work, and the occurrence of incidents. These four perspectives were interwoven,

overlapping, and incomplete. They were derived by means of one’s personal point of

20
view. These four perspectives were to be obtained through surveys. Exceptions were

defined after these perspectives were obtained. A process designer could further

improve the process by changing the process, e.g., from structured process to semi-

structured process to cope with the exceptions identified.

In [Luo et al 2000], an adaptive exception handling scheme was used. In

addition to other exception handler candidates, such as retry, recovery, compensation,

etc., workflow evolution and modification were also considered exception handler

candidates.

KNOWLEDGE BASED EXCEPTION HANDLING

In [Deiters et al 1998], the authors offered a flexible exception handling

mechanism and moved in the direction to take a knowledge-based approach in dealing

with exceptions. They agreed that case based reasoning systems could be an

appropriate support in the usage of knowledge base. However, in [Deiters et al 1998],

the case base was used for offline purpose. That is, the case base was not used for

actively participating in handling exceptions at runtime. It was used for gathering

knowledge.

In the work of [Luo et al 2000], the authors took an active approach in applying

case-based reasoning (CBR) in exceptional problem solving. They used a context-

dependent approach to support adaptive exception handling. In addition to solving

problems as in ad-hoc workflows, a CBR-based exception handling system was

proposed to collect exception-handling cases, derive exception-handling patterns from

the experiences captured in exception handling, and reuse the previous gained

exception handling experiences in the future.

The work reported in [Klein and Dellarocas 1998] was more related to

coordination science, such as high-level conflict management. This work was based

21
on the Process Handbook project at the MIT Center for Coordination Science. It

involved a decade of development and evaluation of systems for handling multi-agent

conflicts in collaborative design. The exception handling discussion in this work was

very high level and its applicability was not convincing, as their discussion is conducted

without a workflow prototype system. A knowledge base where knowledge was

acquired totally by humans was used in this work to store generic process templates

captured. This knowledge base was used only for helping people learn to resolve

conflicts. This work would be more valuable if generic exception handling expertise in

their repository was available that can be used directly in a process management

system.

In [Klein 2000], a semi-formal web-accessible repository of exception handling

expertise was organized for the learning purpose. Their classification of exception or

exception taxonomy was comparable to the exception categorization discussed in [Luo

et al 1998, Luo et al 2000]. Their linkage to/from the exception type taxonomy was

similar to the one proposed in [Luo et al 2000]. Their four main classes of exception

handling processes were similar to the 3-D exception model in [Luo et al 2000].

CROSS-ORGANIZATIONAL EXCEPTION HANDLING

In [Ludwig 1999], an exception-handling mechanism was used to terminate

business processes outsourced. Until now, there has been little progress in cross-

organizational exception handling, though people have come to understand the

importance of the research problems.

ADAPTIVE WORKFLOW

Organizational processes are often dynamic. They evolve over time and often

involve uncertainty. Exceptions are usually unavoidable. To adapt to its environment

and to resolve exceptions, WfMSs should be flexible enough that necessary

22
modifications to workflow specifications and instances are allowed. They need to be

complemented with execution support or run-time solutions such as dynamic

scheduling, dynamic resource binding, runtime workflow specification, and

infrastructure reconfiguration. Developing systems that are able to support dynamic

and adaptable workflow processes stands out as one of the difficult new challenges in

the future evolution of WfMSs [Kochut et al. 1999]. Such systems must be uniquely

sensitive to a rapidly changing process execution triggered by collaborative decision

points, context-sensitive information updates, and other external events. Some

research issues in this area that have been raised in the context of modeling and

specification aspects appear in [Han and Sheth 1998] and the relevant issues involving

organizational changes appear in [Ellis et al. 95, Hermann 95]. The majority of current

work addresses relevant issues at modeling and language levels [Krishnakumar and

Sheth 95, Ellis et al. 95, Jablonski et al. 97, Han 1997], with few efforts on

implementations underway [McClatchey et al. 1997, Taylor 1997, Reichert and Dadam

1998, Kochut et al. 1999]. A particularly different approach to supporting adaptive

workflow (capable of reacting to the changes in local rules and other conditions) was

investigated using the notion of migrating workflows [Cichocki et al. 1997].

In [Han et al 1998], the authors highlighted the needs for adaptive workflow

management. Four levels of workflow adaptation were discussed - domain, process,

resource, and infrastructure. Potential mechanisms for adaptive workflow management

discussed are meta-model, open point, and synthesized.

In [Carlsen and Jorgensen 1998], an approach of process modeling targeting

unstructured or partly structured workflows was use. It was based on a modeling

language called PPM [Gulla, et al. 1991; Willumsen, et al. 1993].

In [Reichert and Dadam 1998], authors presented an approach to runtime

changes of in-progress workflow instances. Through analysis of data flow and control

23
flow, several modifications were proposed. The correctness of these modifications was

also verified. However, this work did not answer the question how the already running

workflow instances are managed when modifications are made.

In [Joeris and Herzog 1998], to cope with the co-existence of workflow

instances following either the old or the new schema, mechanisms for the versioning of

workflow schemes and instances were proposed.

In [Liu and Pu 1998], the author proposed a family of activity-split and activity-

join operations to restructure ongoing activities. Similar to other approaches such as

[Reichert and Dadam 1998], they proposed a workflow correctness criteria based on

their Reference Activity Model. They discussed cases where the re-constructions were

allowed and where they were illegal.

In [Casati et al 1998], the authors provided a concept model of workflow. They

conducted workflow evolution according to activity graphs. Based on the observation

that workflow specification may be modified during runtime, in which workflow

evolution may imply losing all or some of the work done, a set of primitive and

evolution policy are presented in this work. However, an important issue like how

transactional properties of workflow execution are maintained is missing.

ADVANCED TRANSACTION MODELS

Workflow technology targets supporting reliable and scaleable process

executions. In case of failures, workflow processes can resume their executions from

one of their saved states, called a checkpoint, achieved by persistently saving the

states from time to time. The activity of restoring a checkpoint and resuming the

execution from the checkpoint is called rollback. The objective of failure recovery in

workflow management is to enforce the consistency of the workflow under various

failure scenarios [Rusinkiewicz and Sheth 1994]. The workflow should eventually reach

an acceptable state after recovering from a failure in any of the workflow processing

24
components. In real-world workflow applications we have seen that most tasks are

non-transactional, and often involve long-lived tasks. They don not support the strict

Atomicity, Consistency, Isolation, and Durability (ACID) properties of transactions. In

the hope of using the complete ACID transaction theory, by relaxing these ACID

properties, researchers have proposed many advanced transaction models.

NESTED TRANSACTIONS

A Nested transaction [Moss 1981] flags a milestone in the transaction model

evolution. In this transaction model, a transaction may contain any number of sub-

transactions. It extends the flat transaction structure to multi-level structures, usually

called transaction trees. A child transaction may start after its parent has started and a

parent transaction may terminate only after all its children have terminated. The nested

transaction model decomposes a transaction hierarchically. In case of failure, the

recovery can operate at the granularity of a sub-transaction.

OPEN NESTED TRANSACTIONS

Compared with nested transactions, open nested transactions [Weikum and

Schek 1992] relax the isolation requirement in ACID properties. It makes the results of

committed sub-transactions visible to other concurrently executing nested transactions

with which they can commute. Two transactions can commute if each of their

execution orders will result in the same final state.

SAGAS

The Saga [Garcia-Molina and Salem 1987] adds the capability to automatically

determine and start compensation functions to the transaction environment. In its

simplest version, a Saga is a sequence of transactions that either all commit, or

compensation functions will be run for all already committed transactions. It relaxes the

full isolation requirements and increase inter-transaction concurrency. Nested Sagas,

25
an extension to Saga, relaxes atomicity whereby forward recovery is used in the form

of compensating transactions to undo the effects of a failed transaction.

CONTRACTS

Reuter [Reuter 1989] first proposed the ConTract model. It combines ACID

semantics with compensation. Its supported targeting applications are long-running

computations. Long running process executions must be forward recoverable in

ConTract. When a ConTract application is interrupted, the system must not redo steps

that have already been performed successfully but it must resume the execution of the

application where it left off because of the erroneous situation. Similar to Sagas, a

ConTract is allowed to externalize its partial results before the whole ConTract is

complete.

STREAM FLOW

In stream flow [Leymann and Roller 2000], different parts of the workflow are

assembled into a unit called work item stream to incorporate business-oriented units of

work into transactional workflow. All the work item streams are assigned to a particular

agent. All work items are created by the same workflow. All work items are the result of

scheduling consecutive activities of the underlining process model. The same agent

performs all work items of the stream. There are three patterns of work items in stream

flow.

• Micro script stream. A micro script stream is a series of automatic activities

whose implementations do not require user interactions. It is similar to the

automatic task type in METEOR workflow model.

• Transaction stream. It includes a series of activities that are implemented

by short-lived transactions. It is similar to the transactional task type in

METEOR workflow model.

26

• Work package stream. It includes a series of activities that represents a

whole complete work package for agents. In METEOR workflow model, the

network task type is used for the same purpose.

FLEXIBLE TRANSACTIONS

Flexible transactions [Elmagarmid et al. 1990, Zhang et al. 1994] relax the

isolation requirements. They allow transaction designer to specify acceptable

termination state, specifying a set of functionally equivalent sub-transactions. Each of

these sub-transactions when complete will accomplish the task. A flexible transaction

is resilient to failures in the sense that it may proceed and commit even if some of their

sub-transactions fail.

MULTI-LEVEL TRANSACTIONS

Multi-level transactions [Gray and Reuter 1993, Weikum and Schek 1992] are a

specialization of open nested transactions where the tree of sub-transactions is

balanced. Sub-transactions are allowed to commit and release their resources before

their higher level transaction successfully completes and commits. If their higher level

transaction aborts, those already committed sub-transactions may be undone by

executing compensating sub-transactions. Other sub-transactions that observe this

effect will be compensated too. One advantage of Multi-level transaction model is that

less locking is required because operations at high level are allowed to commute even

when operations at lower level might not be.

CROSS-ORGANIZATIONAL WORKFLOW

With the advent of Internet commerce, WfMSs have been increasingly

deployed to deliver e-commerce transactions across-organizational boundaries. One

basic issue is how to connect these WfMSs across organizational boundaries [Ludig et

al. 1999]. In CrossFlow [CrossFlow] project, a virtual enterprise coordinator is used to

27
manage the interactions among WfMSs. It is configured according to the business

agreements that have been reached through contracting among participating

organizations. Several other approaches have been proposed in [Ludig et al. 1999,

IDSO 2000] to address the following two problems:

• How to provide means for the integration of processes of different

organizations while maintaining each organization's privacy.

• How to manage the dynamics of the relationships between several

organizations.

There are some other open problems [Ludig et al. 1999]. One problem is how

to obtain a common view of a process being enacted in multiple organizations. Another

problem is how to decide which organization can monitor and control the process

performance in other organizations.

Business processes can operate within, across or between organizations in

order to implement business value chains to deliver E-Commerce transactions. Two

basic means to construct these cross-organization workflows are bottom-up and top-

down. In the top-down approach, an overview picture of the whole workflow must be

obtained before they can be constructed. In the CMI [Georgakopoulos et al 1999], a

project at MCC, inter-organizational workflow was achieved by using a process model

sitting on top of other workflow models to map methods and tools for defining

processes that compose services provided by different companies. In the case that if

different workflow segments are available, the whole workflow may be implemented

using a set of these workflow definitions that have already been created to support

discrete segments of the overall process. In WISE [Lazcano et al. 2000], a web based

e-commerce platform project, process designers can post their design segments into a

common World Wide Web (WWW) based catalog repository. A virtual process

specification can be constructed by using the segments retrieved from the catalog.

28
This specification can then be compiled and the resulted processes will be enacted by

the WISE engine. In RosettaNet [RosettaNet 2000], a Partner Information Process

(PIP) is defined to allow business processes to interact with each other. An

implementation framework is defined to form a standard for various concrete

implementations. Similarly, IBM has defined tpaXML [tpaXML 2000], an XML based

trading partner agreement specification language to facilitate communications between

trading partners. This tpaXML has been integrated into ebXML [ebXML 2000], an e-

business initiatives led by United Nations.

In summary, there are three ways we have seen of constructing cross-

organizational business processes - split and deploy, composition, and black-box

extension.

• Split and deploy. A whole process is designed. Then it is split into several

sub-processes, and deployed in different organizations. This approach is

currently supported by our METEOR project.

• Composition. In this approach, A whole process specification is obtained

from several segments that may be contributed by different organizations.

Then the process is built and deployed. WISE and CMI take this approach.

• Black-box approach. Contracting has been to interconnect different

processes, forming certain agreements among cooperating processes.

Several process segments are outsourced. A whole process specification,

which might be incomplete, is usually available beforehand. CrossFlow

takes this approach.

29

CHAPTER 3

CROSS-ORGANIZATIONAL BUSINESS PROCESSES

Organizations need to improve to survive. As organizations adapt to new

conditions and respond to competitive pressures, business process re-engineering and

process innovations that are key change management approaches have developed.

These two approaches advocate a company wide approach to managing change. With

the advent of Internet commerce, business processes involving business-to-business

and business-to-customer activities usually span across multiple organizations. As a

result, business processes become more dynamic. At the same time, they have

reached almost anywhere where Internet can reach. To reach more customers and do

business in a more economic way, organizations seek to partner with other

organizations. Thus, a single organization no longer tries to own the whole business

processes to achieve its business goals. Instead, organizations utilize the business

processes of other organizations. They outsource their not-core business processes

while keeping its core business based on the cost-benefit analysis. This has stimulated

research interest in cross-organizational business process re-engineering and

innovations.

In this chapter, we explore techniques that support cross-organizational

business processes. This forms common background for discussions in later chapters.

We present here an approach of process modeling. Then we elaborate the dynamics

of the process chains. At the end of this chapter, we will discuss try-catch block

exception handling mechanism and the exception handling inside a WfMS and across

organizational boundaries.

30
PROCESS MODELING

Business processes are deployed in organizations. Each organization can

decide that whether its processes are accessible by external parties and who are

allowed to access to them. When external users access these exposed processes,

utilization requirements are usually enforced to ensure the correct process

assessment. They are usually specified in the process interaction requirement.

PROCESS OWNERSHIP

Business processes are owned by organizations. Organizations rely on these

processes to achieve their business goals.

The processes deployed in organizations are viewed as value-added assets to

the organizations. The ownership to the business processes by organizations enables

them to have the right to control, monitor and outsource their owned processes.

PROCESS AUTONOMY

Process autonomy here refers to process monitoring and control besides

process operation service accessibility. We use public, protected, and private to mark

a process's autonomy. In the following, we explain process autonomy in the categories

of accessibility, monitoring and control.

PROCESS ACCESSIBILITY

Accessibility of a process is whether the operation services provided by the

process are available and/or accessible.

• If a service of a process is marked public, it is freely accessible by external

processes or users.

• If a service of a process is marked protected, it is accessible by external

processes or users under certain agreements. Process access contracts

are necessary to ensure the correct access.

31

• If a service of a process is marked private, it is not accessible by external

processes or users.

PROCESS MONITORING

Monitoring ability of a process is whether the process can be monitored. Here it

refers to whether the monitoring services are available and/or accessible.

• If the monitoring service of a process is marked public, external processes

or users can freely monitor this process.

• If the monitoring service of a process is marked protected external

processes or users can monitor this process under certain agreements.

Process monitoring contracts are necessary to ensure the correct

monitoring access.

• If a process is marked private, external processes or users cannot monitor

this process.

PROCESS CONTROL

Controlling ability of a process is whether the process can be controlled. Here it

refers to whether the controlling services are available and/or accessible.

• If the control service of a process is marked public, this process is freely

controllable by external processes or users.

• If the control service of a process is marked protected, this process is

controllable by external processes or users under certain agreements.

Process control contracts are necessary to ensure the correct access.

• If the control service of a process is marked private, this process is not

controllable by external processes or users.

32
PROCESS INTERACTION

Processes interact with each other, thus forming a process web. There are

several ways of process interactions, e.g., one way, or two-way interactions. These

interactions are conducted through interaction points. Interaction points are the

communication channels through which process information and/or control are

exchanged. They are either two-way or one-way communication channels.

Process interaction points are the windows that processes expose their

autonomy status to external processes and users.

Process interaction points are either waiting or non-waiting channels. Through

a waiting interaction point, process information or control is exchanged immediately,

while the interaction requestor will be waiting to get response back from the interacted

process. Through a non-waiting interaction point, process interactions terminate

immediately once the process information or control is exchanged.

PROCESS DYNAMICS

Here we discuss process dynamics in the areas of process inter-operability,

process contract, and process fulfillment.

PROCESS INTER-OPERABILITY

Business processes operate within, across or between organizations in order to

implement value chains. Because a set of workflow definitions have already been

created and deployed in different organizations, to construct the overall process, one

way is to inter-connect these already defined workflow segments. Process

interoperability enables these different processes to talk to each other by exchanging

messages. To achieve the process interoperability, several standards have been

created.

33

Figure 3.1 WfMC workflow reference model

In 1998, the Simple Workflow Access Protocol (SWAP) was created to provide

a simple interoperability among Internet based WfMSs. It is a collective effort through

an industry consortium under the auspices of many companies such as Netscape,

Oracle, and Sun. Recently a specification called Wf-XML [WfMC XML] is created using

an XML language designed to model the data transfer requirements set forth in the

Workflow Management Coalition’s Interoperability abstract specification. It is an

interoperability standard defined by a WfMC [WfMC] working group that combines the

elementary concept of SWAP with the abstract commands defined by the WfMC

interface 4 (See Figure 3.1). A similar interoperability standard is JoinFlow [JFLOW].

Its submission is also a joint effort by 19 companies on behalf of the WfMC. As an

industry consortium the WfMC is not able to act formally as a submitter but fully

endorses this submission as a supporter. The technology submitted is directly based

upon the WfMC standards for workflow interfaces, which have been available in the

34
public domain for a number of years and provide a base for the introduction of

workflow technology into the Object Management Group (OMG) architecture. The

workflow coalition has agreed the following inter-operability conformance levels that

can be achieved:

• Chained sub-process interoperability (See Figure 3.2). In this type of

interoperability, a workflow process may invoke another process but might

not wait for the other process to finish. It can proceed with its own

implementation irrespective of the results of the other workflow. Both the

processes would terminate independent of each other.

• Nested sub-process interoperability (See Figure 3.3). In such an example

the invoking workflow waits for the other workflow to complete before

finishing or continuing with its work. In this case the activity becomes the

Requester and it serve as a synchronization point in the interaction of both

workflows.

Figure 3.2 Chained sub-process inter-operability

Figure 3.3 Nested sub-process interoperability

35
PROCESS CONTRACTING

Business processes are deployed to achieve business goals. Certain

transaction environment must be established so the process interactions among

business processes can be conducted. This environment is usually warranted via

contracts. Processes interact with each other on the basis of these contracts. A

contract usually consists the following items as discussed in some projects like

CrossFlow [CrossFlow]:

• Process service identification

• Process partner identification

• Service semantics

• Control semantics

• Monitoring semantics

• Quality of service

• Security specification.

To reach a contact, the contracting parties must be identified. The subject of

the contract must be clearly indicated. The time period of validity should be indicated

clearly. An agreement of non-repudiation of the contract must be reached. The process

of reaching agreements for a contract is actually the procedures for business process

outsourcing [Halvey and Melby 2000]. This has also been discussed in various

researches (e.g. CrossFlow [CrossFlow]):

• Information gathering. Contract concept may be formed at this stage.

Organizations or processes search and gather necessary information to

determine whether to use internal products or to outsource other

organizations' processes.

36

• Contracting intention. The contract preparation activities may be conducted

at this stage. In most cases, a request for proposal (RFP) is sent out to

interested organizations or processes. The RFP contains the requirements

for the contract to be reached.

• Agreement reaching. Contract negotiation activities are conducted in this

stage. They are active until agreement is reached.

• Contract fulfillment. After agreement has been reached, the contract must

be fulfilled in the business operations. In case of any exceptional situations,

they must be resolved. Conflicts in the contract fulfillment must be settled.

The contracting activities among process supporting systems across

organizations to form virtual enterprises vary according to the following two factors:

• Interoperability of process supporting systems.

• Autonomy of process partners.

According to the degree of the process interoperability and autonomy, the

contract can be reached either statically or dynamically. If a contract is reached

statically, a global process must be predefined before it is operational. Through

dynamic contracting, global business process can be constructed on the fly.

CONTRACT FULFILLMENT

Once agreement has been reached, contract must be fulfilled when it is

effective. There are several issues related to contract fulfillment: service delivery,

contract fulfillment monitoring, and process control and exception handling.

SERVICE DELIVERY

To delivery the services, the quality of service (QoS) must be maintained. To

guarantee the service QoS, process monitoring allows tracking the progress of

outsourced services both online during service execution and off-line to analyze

37
aggregated information. The end-users can be granted some control over the

outsourced services (e.g., stop, start, and abort). Exception handling capability helps

settle service fulfillment conflicts.

PROCESS MONITORING

Process monitoring is related to process autonomy. When a process exposes

itself, external processes or users can monitor it. There are some issues in process

monitoring:

• How much information is necessary to get a useful picture of the monitored

processes?

• When such information is private, how can this information be secured and

used as indicated in the contract?

PROCESS CONTROL

Process autonomy decides whether it is controllable by external processes or

users. Some basic controls are start/stop and suspension/resume of processes. Other

controls are creating new instances, deleting existing instances. More advanced

controls are dynamic modifications of business processes. Due to their contradiction

with process autonomy, dynamic process modification is usually conducted based on

process reconfiguration.

EXCEPTION HANDLING

People have been used to exception handling as try-catch block as it is used in

the language of C++ and Java. Try-catch method is useful for making programs less

prone to crash. The basic mechanism of a try-catch exception handling is that when an

exception occurs in the try block, if this exception or one of its super class is specified

in the catch statement, then it will be handled by the code in the catch block. If this

38
exception is not caught, it will be propagated according to the calling structure. When

the exception is propagated to the operating system, this program is terminated.

Try-catch mechanism provides a structural programming means for

programmers to write codes to handle errors. This structured try-catch mechanism also

puts limitation on exception propagation. That is, an exception can only be propagated

along the program calling sequence. One shortcoming of this approach is that when

there is a better handler for this exception, it is very hard for a programmer to write

code to propagate it to this handler.

When this try-catch mechanism is used in distributed systems, its focus is on

local exception handling which still fits the paradigm of structural programming. That is,

though the exceptions in distributed systems are classified into local exceptions and

remote exceptions; they are treated as the same and are handled locally when they

are caught. So this try-catch mechanism really lacks the process-oriented view in

handling exception handling in distributed systems, e.g., WfMSs. It puts challenges for

programmers to flexibly propagate exceptions to capable handlers.

INTRA-WFMS EXCEPTION HANDLING

Try-catch exception handling is not suitable for handling exceptions in a WfMS.

WfMS, a special type of distributed system, has its own exception handling

requirements. In this section, we will focus on the exception handling in METEOR

model 3 [METEOR Model 3]. We believe this discussion is general enough to cover

various aspects in handling exceptions inside a WfMS.

In a WfMS it is assumed the all variables that describe the properties of

processes are taken from a set of variables, called process variable set or vocabulary.

Instances of those variables form the process environment. Situation of the activities in

processes at a certain point of time is called a process state that is specified through

39
task states and data states and the status of workflow environment. Inter-state

dependence constraints are enforced through process transitions. A process is a

series of process states linked by process transitions with starting and ending state

specified. (Please refer to the section of process analysis in appendix).

In METEOR model 3, a task represents an abstraction of activity. A task can

be regarded as a unit of work, which is performed by a variety of processing entities,

depending on the nature of the task. A task can be performed by (realized) by a

computer program, a database transaction, or possibly by a network of interconnected

tasks called a workflow.

A task may be invoked, analogously to a procedure call. A task invocation

creates a task instance, which, in case of a task being realized by a workflow, creates

a workflow instance. A task instance terminates when its realization terminates. A task

realization either succeeds or fails which is then reflected by the task entering its

success final state (either Done or Fail) or its failure final state (either Commit and

Abort). A task may enter its failure final state due to a failure of its realization, which is

described by a suitable exception object. In this case, the task is said to throw this

exception. Subsequently, such an exception may be used for scheduling of an

alternate task in the workflow.

During the workflow execution, a number of undesirable events may occur. For

example, one of the hosts used by a workflow application may crash, a network

connection may go down, or possibly one of the tasks in the workflow application may

detect an exceptional condition, specific to the task itself. In METEOR model 3, an

undesirable event may fall into the category of a workflow management system-

specific, or workflow application-specific. An exception that is system specific is called

a system exception, while a workflow-specific exception is called an application

40
exception. In METEOR model 3, system exceptions may occur during the execution of

every workflow, while application exceptions are restricted to specific applications.

In METEOR model 3, an exception is viewed as an occurrence of some

abnormal event that the underlying workflow management system can detect and react

to. Any abnormal event that is not detected by the enactment system will not be

considered to be an exception in METEOR model 3. This is from the implementation or

enactment point of view. From the modeling point of view, this abnormal event is still

an exception. We will discuss this again in the 3-D exception model in the chapter 3 of

"exceptions in cross-organizational settings". Instead, in METEOR model 3, this

abnormal event will be considered as external exception signal. For example, consider

a workflow instance that must be terminated due to some unforeseen event (for

example, a customer's company went out of business). In such cases, the enactment

and/or the workflow application may be notified externally of such an event by

receiving an exception signal. An exception signal may be sent by an external program

(for example, a database trigger), or manually, by a workflow administrator.

An exception handler is a description of action(s) that the workflow enactment

system, or possibly a workflow application, is going to perform in order to respond the

exception.

In order to provide an exception handler, we must consider:

• Location of control at the time of exception, and

• Exception type.

Placement of control forms a hierarchy of processing components according to

the control structure in METEOR model 3. This hierarchy may be extended even

further, if a workflow application has a hierarchy of tasks with network realizations (the

actual task implementations). An exception may occur at any time, while control is

within one of the components in the hierarchy (see Figure 3.4).

41

Workflow manager

Scheduler

Task manager

Task realization (network)

Task manager

Task realization

Co
m

pe
te

nc
e

le
ve

ls

Exception

Propagating the
exception

Figure 3.4 Competence hierarchy

A competence-driven exception handling is adopted in METEOR model 3 (see

Figure 3.4). A component that has a handler specified for a given exception is said to

be competent to handle the exception. In case an exception occurs, it is first made

available to the workflow component in which the flow of control resides. If the

component is competent to handle the exception, that is it has at least one handler for

the given exception type, it handles the exception. On the other hand, if the component

does not have the competence for the exception, the exception is passed to the next

higher level in the competence hierarchy.

If a component has been designed to handle a given exception, it does so

using its own handlers. A component may also decide to send the exception to the

higher level in the component hierarchy. If a component has not been designed for

handling of the exception, the exception is passed onto the higher level by default.

42
To be more specific, if an exception occurs during an invocation of a task

realization, its parent task enters its fail state and a suitable exception object is made

available for scheduling purposes. This is analogous to the exception being thrown by

the task.

If the task is part of a network, which is a realization of a higher-level task, the

network may be competent to handle the thrown exception. That is, there may be a

failure transition set for the given exception. Such a transition is called a handler for the

exception. However, if the parent network is not competent to handle the thrown

exception, the whole parent network fails and re-throws the same exception to its own

parent, which may have the competence necessary for handling the given exception.

Since the exceptions form a hierarchy, a given task may have more than one

suitable handler (for example, for a specific exception and for one of its predecessors

in the hierarchy). In this case, the most specific handler is used.

It is possible that an abnormal event cannot be detected by any of the

components of the workflow system. For example, a currently running workflow

instance is in violation of a newly introduced business policy. It might be the case that

the workflow runtime should force a workflow instance to fail the next task and

continue its execution following one of its alternate paths. However, at this time neither

the workflow application nor the workflow runtime system is aware of the abnormal

event. Such an abnormal event is called an external fault.

An exception signal may be sent to the workflow system in order to make an

external fault known to the workflow. The signal may be sent by an external entity,

such as a workflow administrator, or a separate program. The workflow administrator

may decide to force a particular workflow instance to fail one of its currently running

tasks, and send a suitable exception signal to the task manager. Similarly, a process

monitoring database updates may trigger sending an exception signal to the workflow

43
manager. Another example of an exception signal may be a TimeElapsed signal sent

to a task manager by the workflow runtime timer. The task manager may then issue a

TimeElapseException as the result of a task not completed within a specified time.

When the exception is propagated to the workflow manager (see Figure 3.4), it

would be propagated to an entity outside of the current workflow management system.

Then this exception will be handled at the cross-organizational process level.

CROSS-ORGANIZATIONAL EXCEPTION HANDLING

Exception handling research in enterprise-wide workflows has achieved

numerous results. For example, the exception handling strategy in METEOR model 3

is a much better approach than the basic try-catch mechanism for handling exceptions

inside a WfMS. However, it primarily deals with intra-WfMS exception handling thus

lacks the process oriented view for handling exception. The process oriented exception

handling involves a series of actions including complicated task and even human

interactions to handle exceptions. This feature is very important especially in handling

inter-WfMS exception across organizational boundaries. Thus, the exception handler

is not just a program any more; it should be an exception handling process.

The exception handling strategy in METEOR model 3 lays down the foundation

for our research in the area of exception handling across organization boundaries.

That is, this strategy makes it possible for us to propose an exception handling

strategy on top of WfMS by utilizing the internal exception masking and propagation

[Luo et al 2000] inside a single WfMS. When the exception is propagated to the

workflow manager (see Figure 3.4), it would be propagated to an entity called

exception-handling coordinator. Then this coordinator will handle this exception. Since

local handling is not always the best solution for handling exceptions, exception

handling across organizational boundaries is focused more on flexible exception

44
propagation once an exception is propagated above workflow manager. We will

discuss this more in the next chapter. To propagate exception among these processes

deployed in different organizations, the following items must be addressed:

• Process status that is supplied by process monitoring or through inquiry.

• Process context information that provides additional information about the

abnormal situations.

• Process controllability that determines the exception-handling scheme.

Finally, to support exception handling for cross-organizational business

processes, we identify the following two requirements to help settle conflicts:

• It is necessary to bring processes back to an equivalent state in case

exceptions occur, but not necessarily the same state. The rollback behavior

depends on process controlling attributes exposed by the contracting

process participants.

• Compensation of previous actions is a good exception-handling candidate.

Dynamic generation of compensating schemes based on operation status is

always desirable. Compensation schemes may be different for different end

users, and different contracting participants.

The Compensation Preceding Rework (CPR) scheme for handling exceptions

is proposed partially upon these two requirements. We will discuss more on CPR in

later chapters.

In the next chapter, we further discuss exceptions in cross-organizational

business processes.

45

CHAPTER 4

EXCEPTIONS IN CROSS-ORGANIZATIONAL SETTINGS

In this chapter, we will first introduce our 3-D exception model. We then give a

brief description of our enterprise-wide exception handling methods. After identifying

the exception handling problems in cross-organizational settings, we briefly introduce

our solution to these problems, i.e., a bundled exception handling approach that

supports (1) exception handling knowledge sharing, (2) coordinated exception

handling, and (3) intelligent problem solving.

3-D EXCEPTION MODEL

Exceptions in our view refer to facts or situations that are not modeled by the

information systems or deviations between what we plan and what actually happen.

Exceptions are raised to signal errors, faults, failures, and other deviations. They

depend on what we want and what we can achieve. For example, in the infant

transport application, space provided by an ambulance is limited. So is the transport

time. The exception handling mechanisms might be different from that used in NICUs

because of the differences in time, space and places. In most realistic situations and

non-trivial systems, there are always interest conflicts between what we want and what

we can achieve. It is more acceptable to design a system that can operate as best as it

can; when there is an exception, it can be handled by the system. We call such a

system an exception-aware system.

Exceptions provide great opportunities for the systems to learn, correct

themselves, and evolve. To build an exception aware system, it is beneficial to clarify

the nature of exceptions to get guidelines in the systems development. As shown in

46
Figure 4.1, known, detectable, and resolvable form three dimensions for the exception

knowledge space. The known dimension is usually captured through exception

specification. Supervision is one of the approaches to enlarge exception knowledge

space in the detectable dimension. To resolve exceptions, capable exception handlers

should be available that make up the resolvable dimension of the exception knowledge

space. Any position in this exception knowledge space can be represented as an

exception point. The exception knowledge of an exception aware system is the set of

all these points.

Known

Resolvable

Detectable

Learning system

Supervision

Handling

Figure 4.1 Three-dimensional analyses of exceptions

• Known: Every person’s knowledge is limited. The same is true for a

system. The world is governed by rules that either we know or we are still

investigating, and our knowledge continues to expand through learning. As

this learning process continues and unknown or uncertainties become

known or certain, prior decisions made may be revised and other

uncertainties may be considered. When a system cannot meet the new

situation, exceptions occur. We call these kinds of exceptions unknown

exceptions, since they are beyond the system’s current knowledge.

Otherwise, we consider them known. For example, during the transport of

the newborn infant, an unknown exception may be caused by an abnormal

situation that has not been met before. A basic solution to unknown

47
exceptions is to build an open system that is able to learn and can adapte

to handle those exceptions.

• Detectable: Exceptions can be classified based on a system’s capabilities

to detect an exception. If systems can notice the occurrence of an

exception then we call it a detectable exception; otherwise we consider it

undetectable. An unknown exception is usually undetectable because there

is no way for the system to know about it until further improvement to the

system is accomplished to achieve that capability. Sometimes an unknown

exception might be detected as another known exception. Detection of an

exception depends on the system’s capabilities. For example, if there is no

equipment on board to measure certain situations, e.g., neurologic checking

of the newborn infant, exceptions related to neurologic situations might not

be detected. Moreover, if there is no mapping from the errors occurring in

the measuring equipment in which an equipment related exception should

be raised to a workflow system’s exception, that equipment exception will

not be detected either. If the system can notice that there is an exception, it

may be possible for the system to derive exception-handling schemes to

handle such exceptional situations.

• Resolvable: Undetectable exceptions are not resolvable at the time of

occurrence, for their occurrences are unknown to the system. Also, there

are certain known exceptions that may be ignored during system modeling

time due to certain specific reasons, such as the frequency of their

occurrences is so low, the effect caused by the exceptions to the system

can be ignored. When such exceptions actually occur, the system cannot

handle them (e.g., the Y2K bug). For example, in the infant transportation

application, on board there are necessary medicines for commonly

48
occurring health conditions for newborn infants. When a medicine is not on

board but is needed for a situation that rarely occurs, then the

corresponding exception to the process is not resolvable at that time. Based

on the system’s handling capability, exceptions can be categorized into two

categories: resolvable and irresolvable. When exceptions occur, the system

can derive a solution to resolve the deviations. Such exceptions are called

resolvable exceptions. When an exception occurs, but the system cannot

derive a solution to solve the deviation to meet the requirement, then it is

called irresolvable exception.

Based on the above perspective, exception aware systems should be built to

have adequate initial exception knowledge represented as exception points. To deal

with exceptional situations, a system actually finds an exception point in the exception

knowledge space through propagation and masking. Propagation allows a system to

propagate an exception to a more appropriate system component to find an

appropriate exception point. Masking usually means when there are several exception

points, the one that is close to where exception is detected is the best candidate.

EXCEPTION HANDLING METHODS

Exception sources include errors, failures, and rule changes, etc. Possible

exception handler candidates are retry, recovery, compensation, dynamic changes,

etc. In this section, we briefly describe these exception methods. To use them in the

cross-organizational settings, there are three items to be considered, i.e., knowledge

sharing, and coordination of the exception handling process, and searching for

appropriate handling method.

Workflow technology targets supporting reliable and scaleable execution of

business processes involving both humans and legacy systems, in distributed and

often heterogeneous environments. In case of failures, workflow processes usually

49
need to resume their executions from one of their saved states, called a checkpoint,

achieved by saving the states from time to time persistently. The activity of restoring a

checkpoint and resuming the execution from the checkpoint is called rollback. Those

techniques have long been used in database systems. A checkpoint is an action

consistent checkpoint if it represents a state between complete update operations. A

consistent state in the database domain is a state when no update transactions were

active. This checkpoint representing a consistent state is a transaction consistent

checkpoint. A checkpoint does not need to satisfy any consistency constraints. Such a

checkpoint is often referred to as fuzzy. But recovery after failure must always

guarantee that the resultant state is transaction consistent even though any checkpoint

used may not be.

The objective of failure recovery in workflow management is to enforce the

consistency of the workflow under various failure scenarios [Rusinkiewicz and Sheth

1994]. The workflow should eventually reach an acceptable state after recovery is from

a failure in any of the workflow processing components. In real-world workflow

applications we have seen that most tasks are non-transactional, and often involve

long-lived tasks, thereby not supporting the strict Atomicity, Consistency, Isolation,

Durability (ACID) properties of transactions. Hence, although desirable, it might not be

possible to recover failed non-transactional tasks using backward recovery. The use of

backward recovery for most human-oriented tasks is not a viable solution since most

erroneous actions once performed cannot be undone. It might be possible for the

human to rectify all the inconsistencies caused due to errors and redo the actions

without affecting other tasks or data objects within the workflow. However, it would be

rare to expect this behavior for most real-world human-tasks. Backward recovery is

useful for purely data-oriented tasks that are transactional tasks or networks. Besides

we also need a forward recovery mechanism that would semantically undo, or

50
compensate a partially failed task. In order to recover the execution-environment

context, appropriate status information must be logged on stable storage. Thus the

state information can be restored at the time of failure, which includes the information

about the execution states of each task and the scheduling dependencies. When

failures occur, in most cases, roll back is necessary. In general workflow management

system (WfMS) is not responsible for a task’s internal rollback process. In a WfMS,

tasks are treated as black box and they are expected to be responsible by themselves

for a correct recovery.

In WfMSs, cooperating workflow processes are dependent on one another due

to inter-process communication. To resume the workflow execution from failures, a set

of consistent checkpoints, called a recovery line in [Park and Kim 1992], taken for such

a group of inter-dependent processes, should be found. The recovery line can be

maintained by properly coordinating each checkpointing and rollback activity; or an

uncoordinated checkpointing approach can be used. In an uncoordinated approach,

checkpoints can be independently taken, and during each recovery activity, a recovery

line can be found by exchanging dependency information [Park and Kim 1992].

It might be useful to introduce the sphere of transaction into the workflow

design and execution to calculate checkpoint and for recovery. The rational behind this

is that usually the whole workflow cannot be transactional. Workflow systems need to

coordinate both human tasks and automatic tasks. Usually a task that involves human

decision making process, i.e. human task is not a transactional task. The recovery of a

workflow usually will not undo all the work has been performed since it is too

expensive and not practical. To support transactional recovery, it is necessary for the

WfMS to support a flexible transaction model that can relieve certain ACID properties.

This can be accomplished through a mapping process from this transaction model to

workflow processes.

51
During the design of workflow, the sphere of transaction can be decided.

Checkpoints can be calculated according to the spheres of transactions. The logging

processes can be better scheduled according to these checkpoints. Necessary

exceptions that should be checked will be defined at this time. During the workflow

execution, runtime checking along with those predefined exceptions will be used to

detect abnormal situations. However, when such exceptions occur, necessary actions

will be taken.

PROBLEMS AND PROPOSED SOLUTION

The business environment is dynamic and hard to predict, so exceptions to

business processes are unavoidable. It will be more challenging when these

exceptions need to be routed among all the contracted business processes across

organizational boundaries. For example, if a customer’s connection requests were

rejected frequently, the direct complaints should go to their SPs. However, the real

problem may lie in L3, the telecommunication infrastructure provider. But L3 may not

even be aware of the abnormal situation, since no exceptional events are routed to it.

This has resulted in the strong need for a new exception resolution mechanism in

cross-organizational settings. The fact that there exist different characteristics in such

exceptions in cross-organizational processes from those in enterprise-wide processes

poses special problems for cross-organizational exception resolution. These problems

are summarized in Table 1.1. They are classified into the following categories:

• Heterogeneity: Exception specification may be different in various

processes deployed in different organizations. Different organizations may

have different exception handling policies. When deriving the exception

resolutions, these heterogeneous exception sources should be taken into

consideration and be integrated.

52

• Responsibility determination (Coordination): When an exception occurs, it

or its resolution must be routed to responsible parties. Such exception

routing across organizational boundaries needs special considerations. It

needs coordination.

• Lack of understanding of the outsourced processes. Exceptional problem

solvers are usually not quite familiar with the details of the outsourced

processes. Exception handling experience sharing in cross-organizational

settings seems more valuable than that in enterprise-wide processes in this

context. It enables exception handlers to derive exception solutions in a

more informed and efficient way.

Knowledge
sharing

Problem
solving

User
profiling

Exception handling
coordinator

Repository

AgentWorkflow
Engine

Admin &
Designer

AgentWorkflow
Engine

Admin &
Designer

Inquiry

 Answer

 Answer

Inquiry

WfMS in
Organization A

WfMS in
Organization B

Figure 4.2 the conceptual model of the coordinated exception-handling scheme

With the advent of Internet commerce, it is increasingly common to see process

outsourcing and dynamic business processes spanning organizational boundaries.

Sophisticated exception handling mechanism in such an environment is becoming

even more important. To support exception handling in cross-organizational settings,

we have proposed a bundled solution (see Figure 4.2) to solve the problems, i.e.,

53
heterogeneity, responsibility determination (coordination), and lack of understanding of

other party’s business processes. This solution involves the following:

• Exception knowledge sharing. It includes exception specification sharing

and exception handling experience sharing. The aim is to take initial steps

towards the development of a methodology to share multiple and often

heterogeneous exceptions and exception handling experiences in cross-

organizational settings. The exception knowledge is stored in the case

repository (see Figure 4.2).

• Coordinated exception handling. It is the process of resolving exceptions in

a coordinated manner. It enables problem solvers from multiple

organizations to participate in the exception handling process. The

exception handling coordinator (see Figure 4.2) coordinates the exception

handling process. Five modes of coordinating exception handling in cross-

organizational settings are proposed - immediate, deferred, de-coupled,

free and close. They are based on the identified types of process

interactions in cross-organizational settings to meet various business

requirements.

• Intelligent problem solving. Exceptional situations are usually very

complicated. A knowledge-based approach is a good candidate in dealing

with such complicated situations. It helps workflow designers and

participants better manage the exceptions that occur during the enactment

of a workflow by capturing and managing the knowledge about what types

of exceptions can occur in the workflow, how these exceptions can be

detected, and how they can be resolved. It allows the users to navigate

through the knowledge repository to find support for his/her decision as to

how to handle a certain exception. An explanatory module is incorporated

54
into the knowledge systems to explain the exceptional situation and

solutions.

55

CHAPTER 5

EXCEPTION KNOWLEDGE SHARING

The exception handling process is an integrated activity that involves both

human and automated processes. Knowledge management tools assist human beings

involved in the exception handling process to make decisions. The task of knowledge

acquisition and problem solving reflects the theme of continuous process

improvement. Exception knowledge is a valuable asset to an organization. It has long

been recognized as a major factor determining business competitiveness [Bittel 1964,

Harvard 1998]. It includes the following:

• Exception pattern, which will be identified in the exception specification,

• Exception handler pattern, which will be identified in the exception handler

specification. Exception handlers include retry, compensation, alternative

task, and recovery, etc.

• Exception handling experience, which will be acquired in case

representations.

Coordinator Services
Translation
Mediation

Query

WfMS

WfMS

WfMS
Repository

Figure 5.1 Exception knowledge sharing

These patterns, described using a set of attributes, are stored in the case

repository (see Figure 5.1). They are shared by all cooperating business processes.

56
The case repository is built upon the workflow repository (See Figure 5.2). Detailed

information about workflow repository can be found in [LSDIS 2000]. A set of interfaces

should be provided to query the workflow repository to allow the knowledge sharing.

These interfaces support querying the following:

• the structural information about workflow specifications

• exceptions that occur in the cooperating organizations

• exception handlers for specific exceptions

• responsible party for the abnormal situations

• interaction points among cooperating business processes

NRL’s NRL’s W orkflow DesignW orkflow Design
ToolTool

NRL’s NRL’s W orkflow DesignW orkflow Design
ToolTool

W orkflow
Specification
Files
(XM L)

W orkflow
Specification
Files
(XM L)

Information
Extractor
(DXM L)

Information
Extractor
(DXM L)

DB

Query Agent
Repository
Navigator

Repository
Navigator

W F
TaskDatabase Utility

CLOB

Query Data

Actual Data (XM L)

Figure 5.2 Workflow repository architecture

EXCEPTION SPECIFICATION

Exceptions can be divided according to organizational boundaries. One type of

exceptions is enterprise-wide exception. The other type is cross-organizational

exception. Three broad exception categories can be made upon these enterprise-wide

exceptions: infrastructure exception, workflow exception, and application exception

57
[Luo et al. 1998, Luo et al. 2000]. The infrastructure exceptions and application

exceptions are mapped to workflow exceptions that include system exceptions and

user exceptions. That is, an infrastructure or application exception will trigger a

mapped workflow exception. This mapping scheme is adopted due to the

heterogeneous nature of exceptions in applications and system infrastructure.

• Infrastructure exceptions. These exceptions result from the malfunctioning

of the underlying infrastructure that supports the WfMSs. These exceptions

include hardware errors such as computer system crashes, errors resulting

from network partitioning problems, errors resulting from interaction with the

Web, errors returned due to failures within the Object Request Broker

(ORB) environment. In the telecommunication application, an infrastructure

exception can be caused by an error in the telecommunication media such

as channel.

• Workflow exceptions. Two basic groups of workflow exceptions include

system exceptions and user-defined exceptions. A variety of system

exceptions identify a number of possible system-related deviations in the

services provided by the workflow system. Examples of this include a crash

of the workflow enactment component that could lead to errors in enforcing

inter-task dependencies, or errors in recovering failed workflow component

after a crash. User-defined exceptions are specified by the workflow

designer and identify possible application-independent deviations in task

realizations.

• Application exceptions. These exceptions are closely tied to each of the

tasks, or groups of tasks within the workflow. Due to its dependency on

application level semantics, these exceptions are also termed as logical

exceptions. For example, one such exception could involve database login

58
errors that might be returned to a workflow task that tries to execute a

transaction without having permission to do so at a particular DBMS. A

runtime exception within a task that is caused due to memory leaks is

another example of application exception. In the telecommunication

example, an application exception can be caused by an error in the

bandwidth change request that the agents could not be found for the roles

required performing the change assignment.

In the cross-organizational settings, another exception category cross-

organizational exception should be defined. A cross-organizational exception is an

infrastructure exception, a workflow exception, or an application exception. If it occurs

it will affect the outsourcing fulfillment, or it may not be handled alone in one

outsourcing partner. An example of such an exception in the telecommunication

application is an application exception, which is caused by an error in the bandwidth

change request that the agents couldn’t be found for the roles required to perform the

change assignment. Because no agents can be found to perform the requested

customer services, customers of the SPs are denied services, which directly harms the

SPs' images.

EXCEPTION HANDLERS

Workflow systems need exception detection and handling mechanisms to

satisfy reliability requirements [Luo et al 1999]. The exception-handling construct, as

well as its supporting mechanism, is meant to be sufficiently general to cover various

aspects of exception handling in a uniform way. It can help separate the modules to

handle unusual situations from the modules for the normal cases. In fact, an exception

is considered a learning opportunity for the workflow systems. It signals the abnormal

situations of workflows and workflow execution.

59
In [Luo et al. 1998, Luo et al. 2000], various exception handlers are identified in

workflow systems. These handlers work in a traditional workflow management system.

• Ignore. An exception is ignored, if no actions are taken to handle it.

• Record. An exception will be recorded when it occurs. The storage place

can be a log file or a database.

• Retry. Only repeatable action can be retried. An example is database

connection. Retry times and the duration of waiting period need to be

specified when retry is used.

• Compensation. An action can be compensated if another action taken can

compensate its effects.

• Alternative task. Instead of executing current task, an alternative task can

be executed.

• Backward recovery. Backward recovery is used to rollback the workflow to

a former consistent state.

• Forward recovery. Forward recovery is proposed for workflow recovery in

long-running processes. Workflow is rolled back to a certain workflow state

from which the workflow execution can resume and proceed. This state

may not necessarily satisfy the global correctness criteria.

• Propagation. If no local handler is available, then the solution is to route it to

another workflow component, say exception-handling coordinator which is

aware of more handling schemes.

• Termination, suspension, and resumption of processes. They are the basic

functionality of supporting workflow exception handling.

• Procedural exception handler. It involves a series of steps to handle

exceptions.

60
The above handlers if used alone are not good candidates in cross-

organizational settings. Handlers of Ignore and Record are trivial solutions. Retry

usually works in a working system with poor performance, or in special situations. For

example, a request to a database server that is restarting likely will fail. This request

can be retried after waiting for a period of time that the server has started. In most

cases, a simple retry will not solve the problems encountered. Compensation and

alternative task are possible candidates. Recovery based solutions usually work only in

transactional environment. Termination, suspension, and resumption of workflow

processes are basic supporting functionality for workflow exception handling.

Propagation and procedural exception handlers are too generic unless good templates

are available.

In cross-organizational settings, we believe compensation preceding rework

(CPR) is a good exception-handling template. Here, compensation means semantic

compensation that is rationale based. Compensation is reached through certain

communication efforts when both parties agree. If the effects of an operation can be

totally undone, it is called perfect compensation. If no action can be taken to decrease

the effects, it is called no compensation. Otherwise, it is called partial compensation.

We will discuss CPR again in the section of coordinated exception handling. The CPR

is contained in the action information block in the case data structure. It includes two

sub-blocks, compensation block and rework block. The following is the CPR template:

• Compensation mode. It can be automatic, manual or none.

• Compensation type. It denotes the compensation scheme type. It actually

contains the class name of that compensation scheme.

• Compensation action. It denotes the compensation scheme. It actually

contains a method name in the class denoted by compensation type.

61

• Compensation parameter number. It denotes the number of the parameters

the compensation scheme needs.

• Compensation parameter string. It holds the parameters to be passed to

this compensation scheme.

• Rework mode. It can be automatic, manual or none.

• Rework type. It denotes the type of rework, such as retry, alternative task,

etc.

• Rework task name. It holds the task name to be tried or activated.

• Rework state string. It holds the state string so correct task data and

parameters can be found. Experts usually don't need to fill in this entry. It

would be automatically filled. However, if a task's task data or parameters

are unknown, this should be filled by workflow designer. For example, if the

workflow designer inserts a new task, and wants to execute this task

instead of retrying an existing task, the designer needs to supply the state

string. It is usually in the form of "start@start".

• Rework parameter string. It holds the task parameter string so correct task

data and parameters can be found. Experts usually don't need to fill in this

entry. It would be automatically filled. However, if a task's task data or

parameters are unknown, this should be filled by the workflow designer. For

example, if the workflow designer inserts a new task, and wants to execute

this task instead of retrying an existing task, the designer needs to supply

the parameter string. It is usually in the form of "r@start@start".

• Rework host. It denotes which host the task will reside. This information is

needed when a new task is inserted and is the executing target.

mailto:START@start
mailto:START@start

62

• CPR mode. It has two modes, "user" and "automatic". If it is in "user" mode,

the values filled by experts in the rework state string and parameter string

will be used first before the values automatically filled are used. If it is in

"automatic" mode, the values filled by experts in the rework state string and

parameter string will be used only if the task data and parameters can not

be obtained by using the string and parameter values that are filled

automatically.

• CPR name. It denotes the adaptability of this CPR. Usually there are four

levels of adaptability denoted by strings of "_ehc_wfa", "_ehc_wfo",

"_ehc_wfi" and "ehc_wft". If the CPR name ends with "_ehc_wft", it denotes

the CPR scheme is adaptable. This CPR scheme can be used without any

human intervention and can be applied across tasks, instance, and

workflow types. For CPR names end with other than "_ehc_wft", the

situation is more complicated. A CPR with a name ending with "_ehc_wfa"

is not adaptable at all. A CPR with a name ending with "_ehc_wfi" is

adaptable only for this same task in the same workflow type. A CPR with a

name ending with "_ehc_wfo" is limited in adaptation. Human involvement

is needed to be present to make changes to the CPR.

The control flow semantics of the CPR is as follows:

• If (compensation mode is automatic) the compensation scheme is

automatically executed.

• If (compensation mode is manual) a human needs to be involved to execute

the compensation scheme.

• If (compensation mode is none) no compensation is necessary for this

CPR.

63

• If (rework mode is automatic) the rework scheme is automatically executed.

• If (rework is manual) a human needs to be involved to execute the rework

scheme.

• If (rework is none) no rework is necessary for this CPR.

EXCEPTION HANDLING CASE

Action
id : String

<<Interface>>

Case
id : String

Concept
id : String

Domain
id : String

+has

+belong

Attribute
name : String
value : String
weight : String

+has

+describe

Effect
id : String

ActionRealization
id : String

1..*

+has

1..*

+has

Figure 5.3 A conceptual model for case

64
We propose here a case based experience knowledge representation (see

Figure 5.3). We are going to model the exception handling experience into cases. The

patterns of the handling process will be derived by using a case-based reasoning

(CBR) scheme, or through expert survey. Cases are data structures that are used to

represent knowledge about exception handling experience. A case consists of

descriptions of exception handling knowledge as well as exceptional situations. An

exception case has a list of attributes specified in the format of <name, value [,

weight]>. Name holds the type of the attribute. An attribute has value. Weight signifies

the importance of this attribute in the case. These attributes are either mandatory or

non-mandatory. Mandatory attributes are essential attributes to characterize the class

of a case. Non-mandatory attributes, which are denoted in “[]” pairs, provide additional

description about the case. Value of the attributes can be either constant, default, or

free. An attribute with constant value cannot change. A default value gives expected

value for that attribute. The value of an attribute can be modified if it accepts free

values.

C IB
id

A IB
id

E IB
id

Ca s e
id

H a n d l in g A g e n t
id

R o le
id

+ h a s

+ P ro c e s s

+ A s s u m e

+ D e a l w it h

+ H a s

Figure 5.4 Relationship between case, exception information block and handling agent

A case (see Figure 5.4) contains three information blocks, EIB, CIB, and AIB.

An exception information block (EIB) describes an exception. A context information

block (CIB) records context information about the exceptional situation. An action

65
information block (AIB) is used to record the actions taken to handle the exception

situation. It is actual the CPR exception handling template. It contains two blocks -

compensation block and rework block. These two blocks are used to describe the

exception handling schemes. An example of such a case is as follows (See Figure

5.4). It describes the experience of handling an exception in which the reference of a

task manager couldn't be obtained. The information contained in the CPR template

(AIB block) actually says to insert the task again into the implementation repository and

retry the task.

<Exception information block>

• Exception type, Java null pointer

• Exception message, Meteor.OrbWork.OWTaskException: JAVA null pointer

• Workflow name, infant

• Workflow ID, infant0

• Component name, allocate_resource

• Propagator, reserved

• State, fail

• Originator, reserved

• Key, ---

• Data, r@

• Host name, mitchell.cs.uga.edu

<Context information block>

• case_number, infant_routing, string, 2000-10-01-001

• infant_name, infant_routing, string, John Calton

• infant_age, infant_routing, string, 4 days

• infant_contact, infant_routing, string, Smith Calton

66

• infant_weight, infant_routing, string, 9

• infant_situation, infant_routing, string, weak

• infant_diagno, infant_routing, string, fine

• infant_history, infant_routing, string, ok

• hospital, infant_routing, string, Athens Best

• hospital_contact, infant_routing, string, Peter Duncan

<Action information block>

• Compensation mode, automatic

• Compensation type, Meteor.OrbWork.ExceptionHandler

• Conpensation action, register_server

• Compensation parameter number, 2

• Workflow, infant

• Task, sender

• Rework mode, automatic

• Rework type, retry

• Rework task name, sender

• Rework state string, START@start

• Rework parameter string, r@start@start

• Rework host, mitchell.cs.uga.edu

• CPR mode, user

• CRP name, cpr_ehc_wfi

67

CHAPTER 6

COORDINATED EXCEPTION HANDLING

A competency-based mechanism works in the single organizational

environment by propagating exceptions among runtime system components such as

task manager, task scheduler, and workflow manager [Luo et al 2000]. To solve the

problem of exception detection and propagation, the exception handling coordinator

will record the cross-organizational exceptions, and share this information with co-

operating business processes. An exception handling mechanism that is able to route

exceptions across organizational boundaries is needed. To realize this kind of

exception routing, the WfMSs will report cross-organizational exceptions to the

exception handling coordinator. The coordinator, then, will share this information with

co-operating business processes.

COORDINATION MODE

Processes are deployed in different organizations. Organizations, as the

process owner, can decide to their own benefit as how to and what to expose their

processes to the outside. In the section, we will propose an approach of exception

aware interconnections to provide guidelines to help resolve the conflict between

operation flexibility and process privacy.

In the following, we will propose five modes of coordinated exception handling

for handling cross-organizational exceptions. They are proposed to meet various

business operation semantic requirements. These five exception-handling modes are

built upon possible process interactions. Generally there are two basic types of

process interactions: one-way interaction and two-way interaction. More complicated

68
interactions can be represented by using these two basic types of interactions. In a

one-way interaction, one process can send a message (request) to another process.

After that, no interaction exists between the two processes. In a two-way interaction,

one process can send a message (request) to another process. It can either receive

response immediately or at a later time.

IMMEDIATE MODE

Immediate cross-organizational exception handling mode is used when there is

a single two-way interaction point between processes deployed in different

organizations. The exception information is exchanged through this single interaction

point. For example, as shown in the Figure 6.1, SPs route their bandwidth change

requests to L3 due to a growth in customer needs. They will immediately get an

exception in case L3 determines that requested bandwidth range does not exist. L3

can register the occurring exception with the Exception Handling Coordinator (EHC).

SP EHC L3

Bandwidth change request

Bandwidth change request

Entry error

Figure 6.1 Immediate mode of cross-organizational exception handling

In the immediate handling mode, the CPR handler template is as follows.

• If (mode is immediate) signal the exception directly;

69

• If (compensation is auto/manual) execute the compensation scheme;

• If (rework is auto/manual) execute the rework scheme;

DEFERRED MODE

Deferred cross-organizational exception handling mode is used when there is a

single two-way interaction point between processes deployed in different

organizations. The difference from the immediate handling mode is that in the deferred

mode an exception is not reported immediately to the cooperating process when it

occurs. For example, as shown in the Figure 6.2, customers send their subscription

requests to SP. SP will not raise exception immediately to its customers when it

determines that not enough credit information is available along with the request.

Instead, SP will fulfill the request, and later raise the exception to customers through

the same two-way interaction point.

Customer EHC SP

Subscription request

No credit history

Credit report

Perform the request

Figure 6.2 Deferred mode of cross-organizational exception handling

In the deferred handling mode, the CPR handler template is as follows.

• If (mode is deferred) fulfill the request and add the exception object to the

normal flow;

70

• Signal the exception;

• If (compensation is necessary) execute the compensation scheme;

• If (rework is necessary) execute the rework scheme;

DE-COUPLED MODE

SP EHC L3

Bandwidth change request

Entry error

Bandwidth change request

Entry error

Figure 6.3 De-coupled mode of cross-organizational exception handling

De-couple cross-organizational exception handling mode is used when there is

only a single one way interaction point between processes deployed in different

organizations. For example, as shown in the Figure 6.3, SPs route their bandwidth

requests to L3 through a one-way interaction point. L3 will try to fulfill the request.

However, when L3 finds that the requested 514KBPS channel is not available, it needs

to raise this exception to SPs. Since there is no other interaction points between them,

L3 needs to raise it to SPs through the exception handling coordinator.

In the de-coupled handling mode, the CPR handler template is as follows.

• If (mode is de-coupled) find the contact party in cooperating process and

the interaction point;

• Signal the exception through exception handling coordinator;

71

• If (compensation is necessary) execute the compensation scheme;

• If (rework is necessary) execute the rework scheme;

FREE MODE

SP EHC L3

Bandwidth change request

Entry errorEntry error

Figure 6.4 Free mode of cross-organizational exception handling

Free mode cross-organizational exception handling is used when there are

several interaction points between processes deployed in different organizations such

that two-way interaction is possible through more than one interaction point. For

example, in the Figure 6.4, SPs route its customers’ bandwidth requests to L3. L3 will

not raise an exception to SPs if it determines that an unrealistic number of channels

are typed in along with the request. Instead, L3 will fulfill the request partially, and add

an exception object to its normal flow. Later it will raise the exception to SPs through

another interaction point determined by the exception handling coordinator.

In the free handling mode, a CPR handler template is as follows.

• If (mode is free) find the contact party in the cooperating processes and the

interaction point;

• Add an exception object to the normal flow;

72

• Signal the exception;

• If (compensation is necessary) execute the compensation scheme;

• If (rework is necessary) execute the rework scheme;

CLOSE MODE

Close mode cross-organizational exception handling is used when there are no

interaction points between processes deployed in different organizations such that no

interactions are possible. For example, in the Figure 6.5, SPs determines the service

quality provided by L3 is not satisfactory, since interaction between them is not

possible at this time, SP will raise an exception through exception handling coordinator

(EHC). EHC can at least record the exception for later use.

SP EHC L3

Quality concern

Figure 6.5 Close mode of cross-organizational exception handling

In the close handling mode, a CPR handler template is as follows.

• If (mode is close) signal the exception through exception handling

coordinator;

• If (compensation is necessary) execute the compensation scheme;

73
COORDINATION ANALYSIS

Now we turn our attention to discuss the applicability of exception handlers in

these coordination modes, interfaces that should be exposed and correctness issues

for possible handlers.

IMMEDIATE MODE

SP L3

•Retry
•Compensation
•Rollback
•Termination
•Suspension
•Restart
•Change

Applicable
Exception
Handlers:

Figure 6.6 Applicable exception handlers in immediate exception handling mode

Cooperating processes must expose their service, monitoring and/or control

interfaces to allow immediate exception handling (see Figure 6.6). The selection of

specific handlers must ensure the correctness execution of the processes.

INTERFACE EXPOSURE

To get an immediate exception thrown when a request is issued from SP to L3,

service requestor in SP can wait on the two-way interface after the request to get the

response back. However, this scheme is usually not good for performance, because

the waiting halts the system. This is one of the reasons why in OMG's interoperability

standard, chained sub-process is proposed. So immediate handling mode usually is

suitable for handling exceptions happening in the interconnection establishment stage.

When the connection cannot be established, exceptions will be thrown immediately.

74
Once the service request is routed from service requestor (SP) to service provider

(L3), situations are more complicated. For example, the service fulfillment may take

time from several minutes to several days, it will cause performance degradation if the

service requestor is waiting for the fulfillment to complete or for an exception to occur.

It is more efficient to request the service provider to expose monitoring interfaces and

control interfaces. So service requestor can monitor the execution status and if an

exception is raised, handlers can be selected from the exposed control interfaces or

from the service requestor's handler package. However, this is no longer immediate

exception handling. We will discuss this in other handling modes.

CORRECTNESS ISSUE

In immediate exception handling mode, because the exception is immediately

obtained, applicable exception handlers in immediate exception handling mode include

retry, compensation, termination and workflow modification and evolution. The

exceptions in this mode are handled by using try-catch block.

• Retry. A retry exception handler usually poses no threat to correctness

violation. The only concern, a retry operation should not generate an

instance with a new instance id.

• Compensation. Usually compensation is built into the process model. When

a compensation operation is needed, it helps compensate what has been

accomplished. In the immediate handling mode, the service requestor is

usually free to choose another process to accomplish its goal, while the

compensation is usually not expensive because the service has not been

started yet. If the service requestor selects a compensation scheme that is

not included in the process model, his/she must ensure that the correctness

criteria are not violated.

75

• Termination. Service requestor (SP) should be able to terminate the

process in L3 if it decide not to use that failure process. L3 needs to ensure

its process meets the termination requirement and expose necessary

interface for SP to do so.

• Workflow modification and evolution. Service requestor (SP) should be able

to modify the process in L3 to its benefits through re-configuration or other

dynamic change methods. L3 needs to ensure its process meets the

various correctness requirements and expose necessary interface for SP to

do so.

DEFERRED MODE

SP L3

•Retry
•Compensation
•Rollback
•Termination
•Suspension
•Restart
•Change

Applicable
Exception
Handlers:

Figure 6.7 Applicable exception handler in deferred exception handling mode

Cooperating processes must expose their service, monitoring and/or control

interfaces to allow deferred exception handling (see Figure 6.7). The selection of

specific handlers must ensure the correctness execution of the processes.

76
INTERFACE EXPOSURE

In immediate exception handling mode, to get an immediate exception thrown

when a request is issued from SP to L3, service requestor SP needs to wait on the

two-way interface after the request to get the response back. We have mentioned such

a waiting halts the system. In deferred exception handling mode, the service request is

already routed from service requestor (Customer) to service provider (SP). The service

fulfillment may take time from several minutes to several days. It will cause

performance degradation if the service requestor is waiting for the fulfillment to

complete or for an exception to occur. Instead, in deferred handling mode, the request

requestor (Customer) will expose an interface to let SP to report exceptional situations.

So SP can push the exceptional information to service requestor (Customer). Service

provider SP needs to expose interfaces to let service requestor to continue the

execution.

CORRECTNESS ISSUE

In deferred exception handling mode, applicable exception handlers in deferred

exception handling mode includes compensation, rollback, termination, execution

continuance and workflow modification and evolution. Retry is not appropriate because

the requested service has already been fulfilled.

• Compensation. Usually compensation is built into the process model. When

a compensation operation is needed, it helps compensate what has been

accomplished. In the immediate handling mode, the service requestor is

usually free to choose another process to accomplish its goal, while the

compensation is usually not expensive because the service has not been

started yet. This is not the case in deferred handling mode since the service

has already been performed. If the service requestor selects a

77
compensation scheme that is not included in the process model, his/she

must ensure that the correctness criteria are not violated.

• Rollback. Service provider SP should allow its service requestor to rollback

the service accomplished. It is an expensive choice though to both

requestor and provider.

• Termination. Service requestor (Customer) should be able to terminate the

process in SP if it decides not to use that process even the request has

been fulfilled. If this scheme is used, it usually means service request has

low trust on service provider. SP needs to ensure its process meets the

termination requirement and expose necessary interface for Customer to do

so.

• Workflow modification and evolution. Service requestor (Customer) should

be able to modify the process in SP to its benefits through re-configuration

or other dynamic change methods. SP needs to ensure its process meets

the various correctness requirements and expose necessary interface for

Customer to do so.

• Execution continuation. If service requestor (Customer) chooses to

continues the execution, it means service provider has gained trust from

service requestor. This is the goal why this exception-handling mode is

proposed to achieve. Service requestor (Customer) receives an exception,

and uses the interface exposed by service provider (SP) to continue the

process execution. The key correctness issue here is the live-ness criterion

must be ensured.

78
DE-COUPLED MODE

Cooperating processes must expose their service, monitoring and/or control

interfaces to allow de-coupled exception handling (see Figure 6.8). The selection of

specific handlers must ensure the correctness execution of the processes.

SP L3

•Retry
•Compensation
•Rollback
•Termination
•Suspension
•Restart
•Change

Applicable
Exception
Handlers:

Figure 6.8 Applicable exception handler in de-coupled exception handling mode

INTERFACE EXPOSURE

In immediate exception handling modes, to get an immediate exception thrown

when a request is issued from SP to L3, service requestor SP needs to wait on the

two-way interface after the request to get the response back (see Figure 6.6). In

deferred handling mode, the request requestor (Customer) will expose an interface to

let SP to report exceptional situations. So SP can push the exceptional information to

service requestor (Customer) (see Figure 6.7). In de-coupled exception handling, there

are no interactions after the service request has been routed from service requestor

(SP) to service provider (L3). Two processes in these two domains can proceed

irrespective of each other. When the requested service being executed in L3 enters

exceptional state, i.e. there is an exception thrown for this exception which can not

79
handled locally, the service requestor (SP) should be aware of this exceptional

situation. Since both instances expose no interfaces for them to interact, the best

chance to resolve the problems relies on the exception handling coordinator (EHC).

EHC should expose interfaces for cooperating processes to report exceptions, while it

is also aware of the interfaces exposed by the processes. In this way, EHC helps

resolve the problems.

CORRECTNESS ISSUE

Applicable exception handlers in de-coupled exception handling mode include

retry, compensation, rollback, termination, suspension, restart of tasks, and workflow

modification and evolution (see Figure 6.8).

• Retry. EHC (see Figure 6.8) can retry the failed task in the process residing

in L3. EHC needs to ensure it generates no instances with new instance

ids.

• Compensation. Like in immediate and deferred handling modes, usually

compensation is built into the process model. When a compensation

operation is needed, it helps compensate what has been accomplished. In

the deferred handling mode, EHC should select a compensation scheme

that is not included in the process model, it must ensure that the

correctness criteria are not violated.

• Rollback. Service provider L3 should allow EHC to rollback what has been

accomplished. It is an expensive choice though to both requestor and

provider. In this de-coupled handling mode, the process in SP has already

proceeded far more than the state to which the process in L3 will be rolled

back. EHC must be very careful to ensure the process in L3 can proceed

80
correctly after the rollback is called. Otherwise the process in L3 might end

in deadlock.

• Termination. Like in deferred handling mode, service requestor (SP) should

be able to terminate the process in L3 if it decides not to use that process

even part of the request has been fulfilled. If this scheme is used, it usually

means service request has low trust on service provider or something really

bad happens. L3 needs to ensure its process meets the termination

requirement and expose necessary interface to EHC so SP can ask EHC to

issue the termination command.

• Workflow modification and evolution. Service requestor (SP) should be able

to modify the process in L3 to its benefits through re-configuration or other

dynamic change methods via EHC. L3 needs to ensure its process meets

the various correctness requirements and expose necessary interface EHC.

FREE MODE

Cooperating processes must expose their service, monitoring and/or control

interfaces to allow free exception handling (see Figure 6.9). The selection of specific

handlers must ensure the correctness execution of the processes.

INTERFACE EXPOSURE

In immediate exception handling modes, to get an immediate exception thrown

when a request is issued from SP to L3, service requestor SP needs to wait on the

two-way interface after the request to get the response back (see Figure 6.6). In

deferred handling mode, the request requestor (Customer) will expose an interface to

let SP to report exceptional situations. So SP can push the exceptional information to

service requestor (Customer) (see Figure 6.7). In de-coupled exception handling, there

81
are no interactions after the service request has been routed from service requestor

(SP) to service provider (L3) (see Figure 6.8). In free exception handling mode, there

are possible interactions after the service request has been routed from service

requestor (SP) to service provider (L3) (see Figure 6.9). Two processes are able to

locate interaction point so through which the information and control can be

exchanged. So both instances will expose interfaces to each other or to EHC in order

for them to interact. Since this type of interactions is very flexible, both L3 and SP

should ensure their processes are able to proceed without the problem of deadlock

and abnormal termination.

SP L3

•Retry
•Compensation
•Rollback
•Termination
•Suspension
•Restart
•Change

Applicable
Exception
Handlers:

Figure 6.9 Applicable exception handlers in free exception handling mode

CORRECTNESS ISSUE

Applicable exception handlers include retry, compensation, rollback,

termination, and workflow modification and evolution.

• Retry. Service requestor (SP) is able to retry the failed task in the process

residing in L3. L3 and SP need to ensure the retry generates no instances

with new instance ids.

82

• Compensation. In free handling modes, when a compensation operation is

needed, it is usually automatically conducted as the scheme is already built

into the process mode. Or either process can select compensation scheme

it after the exception information is routed to it. Both of the two processes

must ensure that the correctness criteria are not violated after

compensation scheme is executed.

• Rollback. Processes in both SP and L3 are allowed to rollback what has

been accomplished. Like in other handling modes, it is an expensive choice

though to both requestor and provider. Like in the de-coupled handling

mode, the process in SP has already proceeded far more than the state to

which the process in L3 will be rolled back or vice versa. It must be ensured

that the process can proceed correctly after the rollback is called.

• Termination. In free exception handling modes, processes in either L3 or

SP should be able to terminate the process in other organizations if it

decides not to use that process even part of the request has been fulfilled.

Both L3 and SP need to ensure their processes meet the termination

requirement and expose necessary interface to each other or to EHC so the

termination command can be issued.

• Workflow modification and evolution. Processes in both L3 and SP should

be able to modify the process in the organization to its benefits through re-

configuration or other dynamic change methods. Both L3 and SP need to

ensure their processes meet the various correctness requirements and

expose necessary interfaces to each other.

83
CLOSE MODE

Cooperating processes must expose their service, monitoring and/or control

interfaces to allow close exception handling (see Figure 6.10). The selection of specific

handlers must ensure the correctness execution of the processes.

SP L3

•Retry
•Com pensation
•Rollback
•Term ination
•Suspension
•Restart
•Change

A pplicable
Exception
H andlers:

Figure 6.10 Applicable exception handlers in close exception handling mode

INTERFACE EXPOSURE

In close exception handling mode, there are no interactions at all after the

service request has been routed from service requestor (SP) to service provider (L3).

Two processes in these two domains are independent of each other. When the

requested service being executed in L3 enters exceptional state, i.e. there is an

exception thrown for this exception which can not handled locally, the service

requestor (SP) can't beware of this exceptional situation. Since both instances expose

no interfaces for them to interact, the best chance to relieve the problems relies on the

exception handling coordinator (EHC). EHC should issue a compensation operation to

the process execution environment and record the exceptional situation for later use.

84
CORRECTNESS ISSUE

In close exception handling mode, applicable exception handlers in close

exception handling mode include only compensation. Other handlers are not

appropriate because no interactions exist between the two processes. Moreover, in

close mode, only environment compensation is possible. Besides compensation, it is

possible for the exception handling coordinator to record the case for later use. In free

exception handling mode, compensation is used to influence the process execution

environment instead to help compensate what has been accomplished.

85

CHAPTER 7

INTELLIGENT PROBLEM SOLVING

A knowledge-based approach of managing the exception handling knowledge

is used in our exception handling system. A case-based reasoning (CBR) mechanism

is used to improve the exception handling capabilities. In this approach, information

about previous problem solving cases is retrieved to help solve new problems. During

the workflow execution, if an exception is propagated to the CBR based exception-

handling component, the case-based reasoning process is used to derive an

acceptable exception handler. Human involvement is needed when acceptable

exception handlers cannot be automatically obtained. Solutions given by a person will

be incorporated into the case repository. Effects of the exception handler candidates

on the workflow system and applications will be evaluated. Thus, when the exception

is handled necessary modifications to the workflow systems or applications may be

made. The exception resolution process is actually the population process of CPR

templates. The actual exception resolution performs the following tasks:

• The coordination mode of exception handling will be determined. The

coordination mode will be determined according to the type of process

interactions between business processes.

• The contacting party as well as interaction point will be determined. A

contacting party is one of the entities that are responsible for handling

exception in the processes in its organization. An interaction point is where

the interactions can take place.

86

• The compensation scheme will be found if necessary. The nature of the

processes will affect the compensation schemes. Human involvement is

allowed in determining the compensation schemes.

• The rework scheme will be found if necessary. Rework scheme is the plan

for the processes to make progress from the failure points. Human

involvement is allowed in determining the rework schemes.

Before we discuss the actual procedures in obtaining the mode, contacting

party, interaction point, and the compensation and rework schemes in case adaptation,

we are going to turn our attention to the reasoning mechanism we will use in the

problem solving process.

REASONING MECHANISM

Two main reasoning mechanisms are used in the intelligent problem solving

process. One is case based reasoning (CBR). The other is default reasoning. CBR is

the reasoning mechanism that can derive solution by learning from prior experience.

CBR is very powerful especially when reasoning is conducted in a single domain on

structured knowledge and context information. However, in real applications, like most

business applications, these are not the cases. Unstructured data and/or heterogeneity

of knowledge and context information are unavoidable. To enhance the problem

solving capabilities of CBR, we combine default reasoning with CBR to provide a

somewhat more general intelligent problem solving mechanism.

• CBR is the general reasoning mechanism used in the problem solving

process. The CBR reasoning steps are generally observed.

• When CBR is applied over unstructured data, or data with missing values,

default reasoning is applied to pre-process the unstructured data. The

structured output will be supplied to CBR reasoning engine.

87
CASE BASED REASONING

The CBR based approach models how reuse of stored experiences contributes

to expertise [Aamodt 1994]. In this approach, new problems are solved by retrieving

stored information about previous problem solving steps and adapting it to suggest

solutions to the new problems. The results are then added to the case repository for

future use. A case conceptually consists of three parts: problem, solution, and effect as

illustrated in Figure 7.1. Problems will be obtained through user or system input. There

are solution candidates for these problems. The selection of the output solution will be

based on the analysis of the effects of those solutions.

 CBR-based exception handling system

Problems Solutions Effects

User
input

System
input

Exceptional
situations

Solutions

by have

Figure 7.1 Exception handling via CBR based mechanism

Input: exception

Job:

Retrieving cases similar to the problems encountered;

Reviewing retrieved cases;

Adapting retrieved cases to the new situation;

Writing back the new generated cases;

Output: solution

Figure 7.2 Case acquiring algorithm in pseudo code

As shown in Figure 7.3, the case-based reasoning architecture consists of the

following components.

88

• Abstractor abstracts the exceptional situation based on ontology.

• Retrieval component retrieves related cases from case repository.

• Analyzer analyzes the solution in the cases, and tries to derive a possible

solution.

• Retainer writes back the new case into the repository and outputs the

solutions.

• Case repository is the place where cases are stored.

• Editor provides GUI interface to modify cases.

• Browser provides GUI interface to allow users to browse the case

repository.

• Explainer explains the cases to users through GUI interface. This

component facilitates users to understand cases, such as what the cases

are, why the solutions are effective, and their effects.

• Ontology & Concept component manage the concepts in multiple domains.

• Similarity Measure component provides similarity measure algorithms

during case retrieval. Cases are often heterogeneous. Different cases need

different similarity measure algorithms.

When exceptions occur, the abstractor identifies the exceptional situation via

input (system input or user input). It extracts information from input. Output of the

abstractor is fed to retrieval component. The retrieval component retrieves similar

cases for analysis by the case analyzer. An acceptable solution may be derived at this

stage. That is, the solution of a similar case can be applied. The new derived case will

be forwarded to the retainer. Retainer may write back the new case and will construct

solutions and supply it to systems or users. In some situations no similar cases can be

found or the analyzer is not confident about the similarity measurement. That is, the

89
value of the similarity measure is too low. In such situations, the case editor will allow

users to derive acceptable solutions. During the interaction, the explainer helps users

to understand the cases.

C ase
R epository

Ontology
& concept
Com ponent

Abstractor

Editor , Brow ser
& Explainer

Retrieval
Component

Retainer

Ana lyzer

System
Input

User
Input

Solution
Output

Similarity
Measure

Figure 7.3 CBR concept architecture

CONCEPT BASED CASE MANAGEMENT

To realize the CBR based exception handling, we propose a specific technique:

concept based case management. Since this case-based reasoning system will be

applied in various domains (such as healthcare, telecommunication, finance, etc.), we

use ontology to describe the concepts used in various domains in the form of concept

trees. In this CBR based exception-handling approach, we usually need to acquire,

represent, index and adapt existing cases to effectively apply the case-based

reasoning process. In our approach, we acquire new cases by learning through

exceptions. That is, we create new cases when exceptions occur. We use this

concept-based case management for the following activities:

• Case acquiring. There are two ways to create new cases. First, cases are

created based on knowledge obtained in expert survey, interview, etc.

Secondly, cases are created in the exception resolution processes.

90

• Case retrieval. We use concepts to organize cases. The retrieval of similar

cases is based on concept-based similarity measurement.

• Case adaptation. Adaptation increases the usability of existing cases. A

scheme of pattern guided case adaptation is proposed.

CASE ACQUIRING

Knowledge obtained through expert surveys and interview is represented as

cases. These cases are stored in the case repository. During the exception resolution,

these cases are consulted in order to find exception solution. New cases can be

created during the resolution process.

A conceptual CBR based problem-solving architecture, shown in Figure 7.4, is

used to realize this problem-solving methodology. The input to the CBR based

problem-solving algorithm will be supplied either by a human or by a workflow system

component. This input will trigger the CBR problem solver to retrieve cases stored in

case repository in handling similar exception situations. Retrieved cases will be

analyzed according to the new situation. To reuse the retrieved cases, adaptation must

take place. The adapted cases are written back into case repository.

C a se
re tr ie v a l

C a se
a n a ly s is

C a se
a d a p ta tio n

C a se
a rc h iv e

B ro w se r

E d ito r

C B R e n g in e

C a se re p o s ito ry

A d a p ta tio n
to o l

U s e r
(h u m a n ,
sy s te m)

R e p o s ito ry
to o l

S o lu tio n

Figure 7.4 Conceptual architecture of CBR based problem solver

91
CASE RETRIEVAL

The retrieval procedure of similar previous cases is based on the similarity

measure that takes into account both semantic and structural similarities and

differences between the cases. A similarity measure is achieved by obtaining the

following:

• Exception similarity. Exception similarity is based on the is-a relationship in

the exception hierarchy in METEOR model 3 [METEOR model 3].

• Workflow similarity. It is the workflow structural similarity such as AND, OR

building block similarity.

• Context similarity. It is obtained by computing nearest neighborhood

function of the quantified degrees of semantic similarities over workflow

application data. To do so, a concept tree should be built first [Luo et al

2000]. The distances between concepts will be stored into the case

repository.

To conduct a similarity based case retrieval, the similarities should be

computed between targeted case (new situation) and old cases for three components:

exception information block, case information block, and action information block. Each

component may have its attributes that are application dependent. They are weighted

according to the similarity measure algorithms used. We are using the least square

distance function to calculate the case similarity. The least square distance function is

defined in Figure 7.5. Assuming two cases a and b both of which have n attributes.

The similarity (S) between a and b will be calculated as in Figure 7.5:

∑ −×−×=
n

biaibiaiwiS)()(

Figure 7.5 Similarity equation for two cases

As shown in Figure 7.5,

92

• wi is the weight for ith attribute.

• ai is ith attribute in case a.

• bi is the ith attribute in case b.

• (ai-bi) is the similarity between attribute ai and bi.

In case two exception cases do not have the same number of attributes, a

default-reasoning scheme [Luo et al 2000] is used. That is, default values will be

assigned to these attributes that don’t existing in one of the cases before similarity is

calculated. The quantified value of similarity about each attribute between two cases is

based on the concept. Concept trees built upon ontology [Luo et al 2000] are used to

calculate the concept similarities. The similarity between two concepts is determined

by considering the sibling difference (S-similarity) and the level difference (P-similarity)

between the two concepts in the concept tree. For example, assuming that the concept

tree is built such that:

• The S-similarity between two concept a and b is 1.

• The P- similarity between two concept a and b is 1.

Then the similarity between the two concepts a and b is 2 by adding both S-

similarity and P–similarity. These similarities will be computed and stored into case

repository. Queries are designed to dynamically load up the similarity values into the

memory during the case match. An example of search for the similarity value between

two concepts is as follows:

Select similarity from concept_tree_name where concept_1 = concept_input1

and concept_2 = concept_input2.

Concept_input1 and concept_input2 are the two concepts between which the

similarity is searched. Concept_1 and concept_2 are the column name in the

concept_tree_name table.

93
CASE ADAPTATION

There are two main approaches to realizing case adaptation:

• Problem adaptation: One way to adapt a case is to enhance the partial

description about the problem. Another way is to substitute conception

realization in a case.

• Solution adaptation: There are two ways associated with solution

adaptation [Aamodt 1994]: (1) reuse the past case solution

(transformational reuse), and (2) reuse the past methods that constructed

the solution (derivational reuse).

Case repository

1. Exception 2. Handling 3. Handler

Adaptation Adapted caseCase

1.Classify the
exception pattern.

2. Search the
handling pattern.

4. Initialize
the handler.

3. Select a
handler pattern.

Figure 7.6 Pattern guided case adaptation

There might be combinations of the above two approaches. However, a case

can be used without any modifications, which is usually called NULL adaptation. Partial

matching during case retrieval is also one way to realize case adaptation. There are

usually two approaches to case modifications: parameterized modification and

substitution modification. Modification of a case by substitution usually results from the

fact that information in the action information block of the case is not applicable or

available.

94
We propose a pattern guided case adaptation scheme (see Figure 7.4). There

are four steps in the adaptation process in this pattern guided adaptation scheme. The

process is really the population process of the CPR handling template.

• Classifying the exception pattern. At this step, the exception pattern will be

identified. If it is a new pattern, it will be added to exception pattern

repository.

• Searching the handling pattern. Once the exception pattern is determined, a

search will be conducted for the handling pattern. At this step, the exception

handling coordination mode will be determined. Contacting party as well as

interaction point is also determined by analyzing the interactions among

business processes.

• Selecting a handler pattern. A handler pattern will be selected based on the

search result from step 2. The compensation scheme as well as the rework

scheme will be determined.

• Initializing the handler. The CPR handling template will be populated. An

adapted case is created.

95

CHAPTER 8

METEOR ORBWORK WORKFLOW MANAGEMENT SYSTEM

Our exception handling system is being implemented for the METEOR

workflow management system. The METEOR project is represented by both the

research system [METEOR], and a suite of commercial offering [Infocosm] that

provides an open-systems based high-end workflow management solution as well as

an enterprise application integration infrastructure.

METEOR ARCHITECTURE

Work flow Bui lder

W o rkfl o w
R e po s ito ry

Buil der

W EB W o rk
W or k flo w

En gin e

W or k flo w
Tr an slat or/
G e n er ato r

O R BW o rk
W or k flo w

En gin e Enac tment

Repo sitory

Figure 8.1: METEOR Architecture

METEOR’s architecture (see Figure 8.1) includes a collection of four services:

Builder, Repository, Enactment, and Manager. Enactment includes two services-

ORBWork [Kochut et al. 1999] and WebWork [Miller at al. 1998]. Both ORBWork and

WebWork use fully distributed implementations. WebWork, an entirely Web-based

enactment service, is a comparatively light-weight implementation that is well-suited for

some types of enterprise workflow process applications that involve limited data

96
exchange and do not need to be dynamically changed. ORBWork is targeted for more

demanding, mission-critical enterprise applications requiring high scalability,

robustness and dynamic modifications.

WORKFLOW BUILDER SERVICE

This service consists of a number of components that are used to graphically

design and specify a workflow, in some cases leaving no extra work after a designed

workflow is converted to a workflow application by the lightweight code generator

[Kang et al 1999]. Its three main components are used to specify the entire map of the

workflow, data objects manipulated by the workflow, the details of task invocation, as

well as security domain respectively [Kang et al 1999]. This service supports modeling

of complex workflows consisting of varied human and automated tasks in a conceptual

manner using easy to use tools. In particular, the designer of the workflow is shielded

from the underlying details of the infrastructure or the runtime environment. At the

same time, very few restrictions regarding the specification of the workflow are placed

on the designer.

The workflow specification created using this service includes all the

predecessor-successor dependencies between the tasks as well as the data objects

that are passed among the different tasks. It also includes definitions of the data

objects, and the details of the task invocation details. This service assumes no

particular implementation of the workflow enactment service (runtime system). Its

independence from the runtime supports separating the workflow definition from the

enactment service on which it will ultimately be installed and used. Workflow process

definitions are stored in the workflow repository.

Initial work on workflow designer can be found in [Lin 1997, Zheng 1997].

97
WORKFLOW REPOSITORY SERVICE

The METEOR Repository Service is responsible for maintaining information

about workflow definitions and associated workflow applications. The graphical tools

in the workflow builder service communicate with the repository service and retrieve,

update, and store workflow definitions [LSDIS 2000]. The tools are capable of

browsing the contents of the repository and incorporating fragments (either sub-

workflows or individual tasks) of already existing workflow definitions into the one being

currently created. The repository service is also available to the enactment service

(see below) and provides the necessary information about a workflow application to be

started.

Initial work in repository service can be found in [Yong 1998].

WORKFLOW ENACTMENT AND MANAGEMENT SERVICES

The task of the enactment service is to provide execution environment for

processing workflow instances. At present, METEOR provides two different enactment

services: ORBWork and WebWork. Each of the two enactment services has a suitable

code generator that can be used to build workflow applications from the workflow

specifications generated by the building service or those stored in the repository. In

the case of ORBWork, the code generator outputs specifications for task schedulers

(see below), including task routing information, task invocation details, data object

access information, user interface templates, and other necessary data. The code

generator also outputs the code necessary to maintain and manipulate data objects,

created by the data designer. The task invocation details are used to create the

corresponding “wrapper” code for incorporating legacy applications with relative ease.

Details of code generation for WebWork are presented in [Miller et al. 98]. The

98
management service support monitoring and administering workflow instances as well

as configuration and installation of the enactment services.

Initial work in enactment service can be in [Das et al. +97].

ORBWORK ENACTMENT SYSTEM

The current version of ORBWork, the one of the two implementations of the

METEOR enactment services has been designed to address a variety of shortcomings

found in today’s workflow systems by supporting the following capabilities:

• provide an enactment system capable of supporting dynamic workflows,

• allow significant scalability of the enactment service,

• support execution over distributed and heterogeneous computing

environments within and across enterprises,

• provide capability of utilizing or integrating with new and legacy enterprise

applications and databases in the context of processes,

• utilize open standards, such as CORBA due to its emergence as an

infrastructure of choice for developing distributed object-based,

interoperable software,

• utilize Java for portability and Java with HTTP network accessibility,

• support existing workflow interoperability standards, such as JFLOW

[JFLOW] and SWAP [SWAP] (initial work can be found in [Ketan 1999]),

and

• provide standard Web browser based user interfaces, both for the workflow

end-users/participants as well as administrators of the enactment service

and workflows.

Scalability of the enactment system is becoming increasingly important for

enterprises that wish to entrust their workflow management system with mission-critical

99
processes. The number of concurrent workflows, the number of instances of the

workflows processed during a given time period, and the average number of tasks in a

workflow, all have an impact on the architectural issues.

We have leveraged the functionality offered by Iona’s OrbixWeb and Name

Service that allow us to place various components of the enactment service or other

run-time components of the workflow instances, such as task schedulers, task

managers, data objects, and even actual tasks on different hosts, at the same time

providing transparency of their locations.

The ORBWork scheduler and its supporting components have been designed

in such a way that the enactment service can be used to support a variety of dynamic

changes both to the workflow schema and to the individual workflow instances. The

fully distributed scheduler (described later) maintains the full workflow specification.

The workflow administrator can easily modify the workflow schema at runtime by

acquiring new information from the workflow repository, or even by modifying the

specification by direct interaction with the scheduler.

ORBWork provides a fully distributed, scalable enactment system for the

METEOR workflow management system. The enactment system has been

implemented to support workflows in heterogeneous, autonomous and distributed

(HAD) systems. It utilizes the World Wide Web in providing a consistent interface to

end-users and workflow administrators from commonly available Web browsers, and

also utilizes the HTTP protocol for distribution of task definitions and task routing

information.

100
ORBWORK ARCHITECTURE

ORBWork’s architecture includes the scheduler, workflow specification

repository, workflow manager, and the monitor. An overview of the ORBWork system

organization is depicted in Figure 8.2.

TASK
Scheduler

TASK
Scheduler

TASK
Manager

TASK

WEB WR

WDE

TASK
Scheduler

TASK
Manager

TASK

...

Workflow scheduler

ORBWork
Manager

Meteor
Monitor

Figure 8.2: ORBWork organization

The scheduler accesses workflow specifications through the HTTP protocol,

directly from the repository. The monitor records all of the events for all of the

workflows being processed by the enactment service. It provides a user interface for

the workflow administrator, who can access the information about all of the current

workflow instances. The workflow manager is used to install new workflow processes

(schemas), modify the existing processes, and keep track of the activities of the

scheduler. The workflow administrator, using the available interface, controls the

existing workflows as well as controls the structure of the scheduler. The structure of

the scheduler can be altered by adding more resources, or by migrating fragments of

the scheduler to other hosts, for example with lower processing loads. Some

101
schedulers may be replicated, in case the load of workflow instances is too high for a

host running just a single scheduler.

ORBWork’s scheduler is composed of a number of small schedulers, each of

which is responsible for controlling the flow of workflow instances through a single

task. The individual schedulers are called task schedulers. In this way, ORBWork

implements a fully distributed scheduler in that all of the scheduling functions are

spread among the participating task schedulers that are responsible for scheduling

individual tasks. In this sense, the ORBWork scheduler is composed of a network of

cooperating task schedulers. Each task scheduler controls the scheduling of the

associated task for all of the workflow instances “flowing” through the task. Each task

scheduler maintains the necessary task routing information and task invocation details

(explained later).

As a workflow instance progresses through its execution, individual task

schedulers create appropriate task managers that oversee execution of associated

tasks. Each workflow instance receives its own task manager, unless the task has

been designed to have a worklist, in which case all of the instances are processed by

the same task manager.

A workflow is installed by first creating an appropriate workflow context in the

Naming Service. (The context is used for storing the object references for all of the

participating components.) Then the installation continues by activating and

configuring all of the necessary task schedulers and registering them with the Naming

Service. All of the component task managers are also registered with the Interface

Repository of the underlying ORB.

102
ORBWORK SCHEDULER

ORBWork utilizes a fully distributed scheduler in that the scheduling

responsibilities are shared among a number of participating task schedulers, according

to the designed workflow map. Each task scheduler receives the scheduling

specifications at startup from the Workflow Repository. Each set of task specifications

includes the input dependency (input transitions), output transitions with associated

conditions, and data objects sent into and out of the task. In case of the human task

(performed directly by end-users), the specifications include an HTML template of the

end-user interface page(s). In case of a non-transactional automatic task (typically

performed by a computer program), the specifications also include a task description

and the details of its invocation. Finally, in case of a transactional task, the

specification includes the details of accessing the desired database and the database

query.

TA SK
Schedu ler

TA SK
Schedu ler

TA SK
Schedu ler

TA SK
Schedu ler

TA SK
Schedu ler

TA SK
M anager

TA SK
M anager

TA SK
M anager

T A S K T A S K

T A S K
H OS T 1

H OS T 2

H OS T 3

H OS T 4

Figure 8.3 ORBWork's Distributed Scheduler

When a task is ready to execute, a task scheduler activates an associated task

manager. The task manager oversees the execution of the task itself. Figure 8.3

103
presents a view of the ORBWork’s distributed scheduler. Note that scheduling

components and the associated tasks and task managers are distributed among four

different hosts. The assignment of these components to hosts can be modified at

runtime by the workflow administrator.

The partitioning of various components (scheduler’s layout), including task

schedulers, task managers and tasks, among the participating hosts is flexible. An

ORBWork administrator may move any of the components from one host to another.

In the fully distributed layout, it is possible to place all of the workflow components on

different hosts.

Each task scheduler provides a well-constrained subset of the HTTP protocol,

and thus implements a lightweight, local Web server. This enables an ORBWork

administrator to interact directly with a selected task scheduler and modify its

scheduling specifications from a common Web browser. It also enables the end-user

to access workflow instances residing on the task’s worklist. This set up naturally

supports a mobile user.

EXCEPTION HANDLING

ORBWork supports exception handling as well. Exception handling in

ORBWork is described in METEOR model 3 [METEOR model 3]. During the workflow

execution, a number of undesirable events may occur. For example, one of the hosts

used by a workflow application may crash, a network connection may go down, or

possibly one of the tasks in the workflow application may detect an exceptional

condition, specific to the task itself. In METEOR model3, an undesirable event may fall

into the category of a workflow management system-specific, or workflow application-

specific. An exception that is system specific is called a system exception, while a

workflow-specific exception is called an application exception. In METEOR model 3,

104
system exceptions may occur during the execution of every workflow, while application

exceptions are restricted to specific applications.

In METEOR model 3, an exception is viewed as an occurrence of some

abnormal event that the underlying workflow management system can detect and react

to. Any abnormal event that is not detected by the enactment system will not be

considered to be an exception in METEOR model 3. This position is obtained from the

implementation or enactment point of view. From the modeling point of view, this

abnormal event is still an exception. Instead, in METEOR model 3, this abnormal event

will be considered as external exception signal. For example, consider a workflow

instance that must be terminated due to some unforeseen event (for example, a

customer's company went out of business). In such cases, the enactment (and/or the

workflow application may be notified externally of such an event by receiving an

exception signal. An exception signal may be sent by an external program (for

example, a database trigger), or manually, by a workflow administrator.

An exception handler is a description of action(s) that the workflow enactment

system, or possibly a workflow application, is going to perform in order to respond the

exception.

In order to provide an exception handler, we must consider:

• Location of control at the time of exception, and

• Exception type.

Placement of control forms a hierarchy of processing components according to

the control structure (see Figure 8.4) in METEOR model 3. This hierarchy may be

extended even further, if a workflow application has a hierarchy of tasks with network

realizations (the actual task implementations). An exception may occur at any time,

while control is within one of the components in the hierarchy.

105
Since an exception is most likely to occur while a workflow application is

running one of the task realizations, the most typical form of an exception handler is a

failure transition. A failure transition is a transition in a network that leads from a failure

state of some task. A failure transition is associated with a specific exception and is

designed to handle the exception, or any of its descendant exceptions.

TASK
Scheduler

TASK
Scheduler

TASK
M anager

TASK

WEB WR

WDE

TASK
Scheduler

TASK
M anager

TASK

...

Workflow scheduler

ORBWork
Manager

Meteor
Monitor

update level_3 set no_times = times
where location = ‘YGA’

Structural Propagation

Figure 8.4 Exception propagation in METEOR ORBWork system

If an exception occurs while a task manager is attempting to execute a task

realization, the task manager itself may have handler for this exception. The handler in

this case may involve a number of retries. Eventually, if all retry attempts are

unsuccessful, the task manager may decide to re-throw the exception.

A competence-driven exception handling is adopted (see Figure 8.4). A

component that has a handler specified for a given exception is said to be competent

to handle the exception. In case an exception occurs, it is first made available to the

106
workflow component in which the flow of control resides. If the component is

competent to handle the exception, that is it has at least one handler for the given

exception type, it handles the exception. On the other hand, if the component does not

have the competence for the exception, the exception is passed to the next higher

level in the competence hierarchy.

If a component has been designed to handle a given exception, it does so

using its own handlers. A component may also decide to send the exception to the

higher level in the component hierarchy. If a component has not been designed for

handling of the exception, the exception is passed onto the higher level by default.

To be more specific, if an exception occurs during an invocation of a task

realization, (e.g., database update task in Figure 8.4), its parent task enters its fail

state and a suitable exception object is made available for scheduling purposes. This

is analogous to the exception being thrown by the task.

If the task is part of a network, which is a realization of a higher-level task, the

network may be competent to handle the thrown exception (note that even at task

manger may be competent to handle an exception). That is, there may be a failure

transition set for the given exception. Such a transition is called a handler for the

exception. However, if the parent network is not competent to handle the thrown

exception, the whole parent network fails and re-throws the same exception to its own

parent, which may have the competence necessary for handling the given exception.

Since the exceptions form a hierarchy, a given task may have more than one

suitable handler (for example, for a specific exception and for one of its predecessors

in the hierarchy). In this case, the most specific handler is used.

If the task representing the whole workflow fails, the whole workflow fails and

the exception is passed on to the workflow scheduler. If the thrown exception is one of

the exceptions for which the scheduler is competent, it is then handled accordingly to

107
its type by the scheduler. Otherwise, the scheduler re-throws the exception to the

workflow manager (see Figure 8.4).

The workflow runtime system (workflow manager) has default handlers for all

the workflow exceptions. In other words, the workflow manager is competent to handle

any exception, whether system or application-defined. The handlers invoke the

recovery mechanism, whenever necessary and possible.

If an exception is detected while a task manager is attempting to run a task

realization (for example, a computer program), the task manager itself may be

competent to handle the exception with one of its internal handlers. Such handlers

typically involve retrying the task realization a number of times, before re-throwing the

exception to the higher level component.

It is possible that an abnormal event cannot be detected by any of the

components of the workflow system. For example, a currently running workflow

instance is in violation of a newly introduced business policy. It might be the case that

the workflow runtime should force a workflow instance to fail the next task and

continue its execution following one of its alternate paths. However, at this time neither

the workflow application nor the workflow runtime system is aware of the abnormal

event. Such an abnormal event is called an external fault.

An exception signal may be sent to the workflow system in order to make an

external fault known to the workflow. The signal may be sent by an external entity,

such as a workflow administrator, or a separate program. The workflow administrator

may decide to force a particular workflow instance to fail one of its currently running

tasks, and send a suitable exception signal to the task manager. Similarly, a process

monitoring database updates may trigger sending an exception signal to the workflow

manager. Another example of an exception signal may be a TimeElapsed signal sent

108
to a task manager by the workflow runtime timer. The task manager may then issue a

TimeElapseException as the result of a task not completed within a specified time.

The workflow system received the exception signal and continues its operation

as if the exception was detected by the workflow itself.

ORBWORK IMPLEMENTATION

One of the most important considerations while designing the ORBWork

workflow management system has been its flexible and easily modifiable distributed

architecture. The current version of the system has been implemented in Java and

OrbixWeb 3.2, Iona’s CORBA system with Java binding. In addition, Iona’s Naming

Service has been utilized as a way of providing location transparency for all of the

ORBWork components.

Using CORBA, and especially Iona’s OrbixWeb and Naming Service, as the

underlying middleware system offers a number of advantages for implementing a

distributed workflow enactment system. In addition to the obvious features provided by

CORBA, ORBWork relies on a number of specific services that proved extremely

useful in implementing ORBWork.

All of the ORBWork components are implemented as CORBA objects.

ORBWork relies on the Orbix Activator to start the necessary server when its functions

are necessary for the activities of the distributed scheduler and also shutdown the

servers once no services have been requested within a specified time interval. In this

way, certain portions of a large, distributed workflow (for example those less frequently

used) may become inactive, reducing the overhead on the host systems to the

necessary minimum.

109
TASK SCHEDULERS

A task scheduler is implemented as a CORBA object. The IDL interface

presented to clients (other task schedulers and other ORBWork components) enables

them to invoke various scheduling functions according to the currently loaded

specifications. The interface also enables dynamic modifications of the scheduling

specifications by reloading from the specification server (repository) or by a direct

modification of the specification within the task scheduler.

A task scheduler relies on Orbix Name Service to locate its successors. This

enables the ORBWork administrator to dynamically reconfigure the runtime layout of

the scheduler by shifting some components between hosts, without introducing any

changes to the remaining task schedulers, or workflow instances administered by

them.

ORBWork uses the object loader capability supported by OrbixWeb to

save/restore the state of a task scheduler. The state includes the necessary

information about forthcoming instances (those with still unfulfilled input dependency)

and those already on the worklist. As the CORBA object representing a task scheduler

is activated (because one of its task predecessors attempts a transfer of the next

workflow instance), the necessary scheduling data is automatically reloaded.

TASK MANAGERS

Task managers control execution of all non-human tasks (human tasks have no

associated task managers). Depending on the task type, a task manager is classified

as non-transactional or transactional, and is implemented as a CORBA object. A task

manager’s IDL interface allows it to be invoked by the corresponding task scheduler.

Once activated, the task manager stays active until the task itself completes or

generates an exception. Once the task has completed or terminated prematurely with

110
a fault, the task manager notifies its task scheduler. The task scheduler then

continues the flow of the workflow instance.

Orbix Activator automatically activates the task manager, only when needed.

The communication between the task scheduler and the associated task manager is

accomplished by asynchronous (one way) method calls.

A transactional task manager uses JDBC to access the requested data source.

Currently, ORBWork provides specific task managers for accessing Oracle and Mini

SQL databases, as well as one for the Open JDBC driver from I-Kinetics. The last of

the mentioned task managers allows a uniform access to a wide variety of database

management systems (including those on mainframes) from a single task manager.

DATA OBJECTS

Data objects are implemented as CORBA objects, providing an IDL interface

for accessing all of the defined attributes and methods. As in the case of a task

scheduler, the data object implementation uses the object loader to load and save the

state of each data object. The CORBA server hosting the data objects is automatically

shut down if no data read/write requests arrive within a specified time period, and the

dynamic loader saves the state of the object.

As task schedulers implement flow of control within a workflow instance, data

objects must be made available at the successor tasks. Instead of the whole object,

only the object reference is sent to the task scheduler. When preparing to run the task,

the task scheduler accesses the necessary data object(s) (using the Dynamic

Invocation Interface) and extracts the relevant attribute values.

ORBWORK SERVERS

Typically, a single ORBWork host runs a number of task schedulers, each of

which is implemented as a separate CORBA object. A CORBA object must reside

111
within a CORBA server that typically runs as a single operating system process. In

order to save computer resources, a group of ORBWork task schedulers may be

placed within a single CORBA server that functions as an ORBWork server. Each

ORBWork server is designed to control any number of task schedulers.

A workflow installed on the ORBWork enactment system may utilize any

number of heterogeneous hosts (of course, OrbixWeb must be available on each one

of them; clients/browsers may be used anywhere). Each of the hosts may have any

number of ORBWork servers. However, the most common approach is to keep the

number of ORBWork servers close to the number of available processors. Nowadays,

some of the available Java virtual machines are able to take advantage of the available

processors to run threads. Since the implementation of an ORBWork task scheduler is

multithreaded, the question of the number of ORBWork servers may be less critical in

that if all of the schedulers are placed within a single server, the schedulers will be able

to utilize all of the available processors.

ORBWORK MANAGER

The ORBWork Manager is used to install workflows (schemas) and activate all

of the necessary task schedulers. In addition to registering with Orbix Name Service,

each task scheduler registers with ORBWork Manager and notifies it of its precise

location. In addition, since each task scheduler provides a subset of the HTTP

protocol, the scheduler notifies the ORBWork Manager of the precise URL address

that the end users and the administrator can use to interact directly with it. The URL

address is created when the scheduler is initially installed and it contains the port

number that has been assigned to the HTTP server.

The manager is implemented as a CORBA object. It has an IDL interface that

allows ORBWork clients to install and administer a workflow (schema) as well as

112
create workflow instances. The manager provides an HTTP protocol, so that the same

administrative functions can be performed via the Web, from a common browser.

In order to provide an easy access to task schedulers, the ORBWork Manager

also functions as a URL redirector, when an end-user wishes to access her task's

worklist. This is necessary since the port number on which the task scheduler's HTTP

server is listening is assigned by the system at the time the task scheduler is activated.

The port number is not fixed and cannot be known beforehand.

It is important to note that the role of the ORBWork Manager is necessary only

at the time a new workflow is installed or modified, or when an end-user is connecting

for the first time to his designated task. The manager does not participate in any task

scheduling activities.

113

CHAPTER 9

EXCEPTION HANDLING SYSTEM

Workflow systems need exception detection and handling mechanisms to

satisfy reliability requirements [Luo et al 2000]. In fact, an exception is considered a

learning opportunity for the workflow systems. It signals the abnormal situations of

workflow and workflow execution. During the workflow execution, runtime checking

along with those predefined exceptions will be used to detect abnormal situations.

However, when such exceptions occur, necessary actions will be taken. If an exception

occurs, acceptable exception handler, e.g., recovery activities will be called to handle

such exceptional situations. In case an exception can not be handled locally, the case

repository will be consulted. Solution contained in the similar case retrieved will be

used to handle the exceptions.

SYSTEM ARCHITECTURE

The exception handling system is implemented based on METEOR OrbWork

runtime system. The whole system is design as a separate module to the OrbWork.

The actual exception handling system is the exception handling coordinator,

which consists of four servers implemented as CORBA objects, exception handling

coordinator, case server, database server, and agent. When the exception handling

coordinator is used with OrbWork system, other tools are also used to facilitate the

exception handling process. They are the system monitor and network designer. The

system monitor reports system status. Network designer, while being used to design

workflow applications, is used to change processes.

114

Knowledge
sharing

Problem
solving

Coordination

Exception handling
coordinator

AgentOrbWork
Engine

Admin &
Designer

AgentOrbWork
Engine

Admin &
Designer

Handling
Exception

 Handling

 Response

Inquiry

Organization A

Organization B

Repository

Case
Analysis

Case
Adaptation

Case retrieval

CBR Center

Database Server

Database Accessing

Figure 9.1 Exception handling implementation conceptual architecture

This coordinated exception handling mechanism has been integrated with

METEOR OrbWork workflow management system. It is implemented in a distributed

manner (see Figure 9.1). A set of exception handling protocols (e.g. Handling,

HandleException, Inquiry, and Response) has been created (see Figure 9.1).

“HandleExcpetion” is used for WfMSs to propagate exceptions to the exception

handling coordinator. “Handling” is used for the exception handling coordinator to send

out CPR exception handling schemes. “Inquiry” is used to send a query to exception

handling coordinator. “Response” is used by the exception handling coordinator to

answer inquires. This exception-handling framework consists of four CORBA servers

described in interface description language (IDL). These servers can be distributed

over different hosts. They are described as follows:

• CBR Center server. It provides interfaces that allow workflow management

systems to propagate exceptions to it, accept exception inquires, and send

out CPR exception handling schemes.

115

• Case server. It provides case operation interfaces such as case retrieval,

case adaptation, and case storage.

• Database server. It provides database operation interfaces that encapsulate

the database access differences in database systems used in the exception

handling system by using JDBC.

• Agent server. It provides interfaces that accept CPR exception handling

schemes from Center server and execute the schemes.

DB operation
Interface

Case operation
interface

Center interface

Exception handling
coordinator

Repository

AgentWorkflow
Engine

Admin &
Designer

AgentWorkflow
Engine

Admin &
Designer

HandleException ()

 Handling()

 Response()

Inquiry()

Organization A

Organization B

Exception handling
Protocol

Figure 9.2 Exception handling coordinator implementation architecture

A GUI client (see figure 9.3) has been developed so human beings can interact

with the OrbWork runtime in handling exceptions. The GUI client communicates with

exception handling coordinators via CORBA IIOP protocols. We summarize how an

administrator can use this GUI tool in handling exceptions in the following:

In the exception retrieval panel (see Figure 9.3), administrators can retrieve

exceptions propagated to the exception handling coordinator, which are not handled

yet. Administrators can select to handle any retrieved exceptions. Once an exception

item is selected, other administrators cannot select it. But other administrators can still

view that exception item.

116

Figure 9.3 GUI based Exception handling client

In the case search panel (see Figure 9.3) administrators can retrieve similar

cases. Administrators are allowed to use the interactive search tool to find more case

according to his/her interests. When administrators need to modify existing cases, they

need to use the case analysis tool available in the analyze panel (see Figure 9.3).

The case analyzer is used to analyze these retrieved cases. Administrators can

insert or remove cases from the case pool. Administrators can also modify the

attributes of any cases if allowed.

Administrators can interact with CBR based problem solver to solve problems

by using the case adaptation tool available in the take action panel (see Figure 9.3).

The case adaptation process will begin when the “Evolve” button (which is not shown

in Figure 9.3) is clicked. The suggested result will be displayed when adaptation

117
finishes. Administrators can decide to use the suggested solution by clicking “Take

Action” button (which is not shown in Figure 9.3). Administrators can also write back

the cases into the case repository.

PROCESS INSTANCE AND DATA BACKUP

Interaction
Points

Processes Organization
 A

has

Interaction point
catalog

Process and its
instance catalog

Organization
catalog

Exception handling
coordinator

Database

Register instance, data

Register instance, data

Interaction
Points

Processes Organization
 B

has

Figure 9.4 Process instance and data registration

A workflow instance can't be recovered if its instance and data can't be

recovered. From time to time, process instances and their data must be stored. A full-

scale checkpointing [Luo 2000] is one of the choices to facilitate recovery process. In

this dissertation, an alternative scheme of instances and data backup is taken and

implemented. Two reference copies of the process instances and data are maintained.

They are used by the agent to get task data and parameters when the agent receives

exception-handling requests from the exception handling coordinator.

RESTART AN INSTANCE

In some cases, it is necessary to start over the whole process instance from the

very beginning. The scenario of restarting a workflow instance is shown in Figure 9.5.

118
Once the exception handling coordinator (EHC) gets the solution of restarting a

workflow instance, it locates an appropriate Agent by checking the CPR inside the

action information block of the case. Agent then obtains the workflow id and the start

task specification for this workflow. When the transition call is constructed over the

start task, it is immediately invoked. The workflow instance with the requested instance

id is generated.

Customer Agent EHC CBR Center

Handle Exception

Suggested solutionRestart the instance

Restart the instance
EIB, CIB, AIB

Transition
call

Get WF Instance ID
& other start task spec

Bind to the start task
Construct a transition

SP

Handle Exception

Exception RecordException record

EIB, CIB, AIB

GUI
Client

Figure 9.5 Restart a workflow instance

RETRY AND ALTERNATIVE TASK IMPLEMENTATION

In most of the cases, it is necessary to retry the task or start an alternative task.

The scenario is shown in Figure 9.6. Once the EHC gets the solution of retrying a task,

it locates an appropriate Agent by checking the CPR inside the action information

block of the case. Agent then obtains the workflow id and the task's specification for

this workflow. Then the reference of this task's scheduler reference is obtained. The

instance data and task parameters are also obtained by using the instance and date

reference copy maintained. The values of the data will be updated by the values

119
contained in the context information block in the case. When the transition call is

constructed over the task that is to be re-activated, it is immediately invoked. The task

is retried or re-started.

Customer Agent EHC CBR Center

Handle Exception

Suggested solutionRetry sender task

Retry sender task
EIB, CIB, AIB

Transition
call

Find wf instance
Find task param, data
Update data

Bind to sender task
Construct a transition

SP

Handle Exception

Exception RecordException record

EIB, CIB, AIB

GUI
Client

Figure 9.6 Retry and alternative task implementation

EXCEPTION DESIGN AND HANDLING

Workflow application developers can anticipate and provide solutions to deal

with certain exceptional situations. To support such user exception handling, we

provide tools to allow workflow application designers to define their own exceptions,

called user exceptions. In the exception design, it is necessary to provide mappings

between exceptions and exception sources (see Figure 9.7). Exception sources

include errors, faults, failures, and other exceptional situations. We view constraints as

exception sources too. That is, when constraints are not met, exceptions may be

raised. By providing such a mapping mechanism, workflow application designers can

decide which exceptions should be raised when those abnormal situations occur. Also,

workflow application designers can provide mappings from exceptions to exception

120
handlers so that when such exceptions are raised, systems can know which exception

handlers are good candidates. The candidates for exception handlers are ignoring,

warning, retry, suspend/stop/resume, workflow recovery operations (e.g., backward

recovery, forward recovery, alternative tasks, etc.), workflow modifications and

evolutions, and other exception masking and propagation operations. Those mappings

will be specified in JECA rules [Luo et al 2000]. More information about JECA can be

found in the process analysis section in the appendix.

Exceptions

System User

Exception hierarchy Exception sources

Errors

Faults

Failures

Constraints

 Mappings
 Mappings

Exception handler

Procedural

Recovery

Suspend/stop

Modification

Figure 9.7 Mappings between exceptions, exception sources, and exception handlers

Exception
 timeout

Exception
Adapter

Exception
Object

Exception
Listener/Handler Provide

Interface

Forward
Exception

Fire timeout
Exception

Register Exception
Detector/Handler

Exception
Object

public class
taskAssignException
{
...
}

public class
TaskManagerSrv
{
...
}

tmRef .Execute(...)
...

Exception
IDL
ExceptionTrigger

Vector
ExceptionQueue ;
while
(! ExceptionQueue .
IsEmpty ())
{
 deliveryException (..);
}

Figure 9.8 User exception handling scenario

121
The following JECA rule,

Event: taskAssignException

Condition: agent not available and task priority is urgent

Action: task-reassignment

Justification: newborn infant transport to NICU,

shows a mapping example of a task assignment exception in the infant

transport application. In the resource allocation step, if there are no human agents

available who can assume the health professional role, then taskAssignException

exception will be raised. Since the infant should be transported immediately, another

qualified healthcare professional for the healthcare professional role must be found.

Figure 9.9 Exception editor

122
In Figure 9.8, an example is shown for a user exception-handling scenario that

involves taskAssignException exception. This exception will be declared as a member

of taskAssignException class. By using the mappings designed, workflow systems will

register the exception detector and handler for that taskAssignException exception.

When the task assignment exceptional situation as defined by administrators is

detected, a taskAssignException is raised. The taskAssignException exception object

will be forwarded to the registered exception handler via the exception adapter. The

exception adapter in this scenario act as a bridge that de-couples exception detectors

and handlers.

Figure 9.10 Exception handling editor

As shown in the Figure 9.9, the exception editor is used to define new

exceptions. Exception types can only be used in the workflow applications after they

123
have been defined. At this time, a GUI-based editor is implemented. This exception

editor uses the same GUI interface as data editor.

If application developers want to define new exception types, they can choose

the "new" item in the "File" menu. Once the "Save" item in the "File" menu is clicked,

all the changes will be stored and kept.

Workflow application developers can specify exception-handling schemes by

using the GUI tool (see Figure 9.10) developed. As shown in Figure 9.10, there are

three types of exception handling schemes that can be specified in this GUI exception

handling designer - retry, rethrow, and email.

SYSTEM MODE

Two system working modes are possible - automatic mode and user

intervention mode. Working mode is configurable. It can set in the cbr.properties file,

which holds all the property settings to make the system work.

OrbWork
Manager

EHC CenterAgent
HanldeException HanldeException

Client

Handling

Auto_handling

Find Solution

HandlingHandling

Figure 9.11 Automatic system working mode

124
AUTOMATIC MODE

If the property "CBR_USER_INTERACTION" is set to 0, then the intelligent

problem-solving component works in the automatic mode. In the automatic mode, the

intelligent problem solver tries to find solutions to the exception situations in an

automatic way. The scenario of automatic working mode is shown in Figure 9.11.

First if an exception occurs, and it cannot be handled, one of the solutions is to

propagate it to exception handling coordinator (EHC) through a CORBA call

HandleException(). When the EHC receives the request, it finds a proper intelligent

problem solver (Center), and propagates the exception to the Center. Once the Center

receives the exception, it will generate an exception record to record the exceptional

situation. A key is generated for this record by computing the exception type, exception

message, workflow type, and component name where the exception is originally

thrown, host, and time stamp. After the record is generated, the

"CBR_HUMAN_INTERACTION" property contained in the cbr.properties file is

checked. If it is set to zero, then the Center enters automatic handling mode. The case

repository is consulted at this time. There are four level case searching priorities. The

search is first conducted over the whole exception record generated. This is called

exact match. If a case is retrieved, the CIB block will be checked. If the case is

adaptable, which is denoted by the suffix of CPR_name, then this case will be supplied

to EHC by calling a CORBA call Handling(). The EHC will locate an appropriate Agent

by checking the CPR. The final solution will be transferred to Agent to execute the

handling plan by calling a CORBA call Handling() on Agent. If the compensate scheme

is not null, then the compensation scheme will be first executed. The rework scheme is

executed after compensation scheme finishes.

If during the exact match, no case is available, Center enters the second level

search. It will try a partial match over exception types, workflow types, and component

125
name where the exception occurs in the exception record. If several cases are

retrieved, a similarity measure is conducted. That process instance data will be

retrieved and the values will be used to match against the case context information

block. This is called context match. In the context match, this context will be used to

match the contexts in the retrieved cases. The concept tree will be consulted during

this stage. The case with smallest distance will be chosen as the candidate. The CPR

in this case will be checked to see whether this case is adaptable. If it is adaptable,

then the Handling() will be called over EHC and then Agent to deliver the solution.

Otherwise, the Center enters manual mode.

If during the second level search, no cases are retrieved, the Center enters the

third level search. The match will be checked over exception type and workflow type. If

there are any candidates, they will be processed following what we have described in

the second level search. Otherwise, fourth level search is conducted by matching

exception type only.

USER INTERVENTION MODE

In the user intervention mode, administrators participate in the exception

handling process through using a GUI based CBR client.

Similar to the automatic mode, if an exception occurs, and it cannot be

handled, one of the solution is to propagate it to exception handling coordinator (EHC)

through a HandleException() call. When the EHC receives the request, it finds a proper

problem solver (Center), and propagates the exception to the Center. Once the Center

receives the exception, it will generate an exception record to record the exceptional

situation. A key is generated for this record by computing the exception type, exception

message, workflow type, and component name where the exception comes from, host,

and time stamp. After the record is generated, the "CBR_HUMAN_INTERACTION"

126
property will be checked. If this property is not set to zero, then the Center enters

manual handling mode. The expert needs to use the GUI client to retrieve propagated

exceptions first. Then the expert needs to search the case repository to find solution

candidates. Similarly there are four level case searching priorities as in the automatic

mode. The difference from automatic mode is when there is a case candidate it will be

retrieved and the expert decides whether to execute the CPR scheme in this case. The

expert can modify the case. Once the expert thinks the solution is workable, he can

send the handling request to the EHC and Agent later via the GUI client. The expert

can also decide to write the new case into the case repository.

OrbWork
Manager

EHC CenterAgent
HanldeException HanldeException

Client

Handling

RetrieveException

HandlingHandling

Search for Case

Figure 9.12 Manual handling mode

127

CHAPTER 10

SYSTEM ANALYSIS AND CONCLUSIONS

In this dissertation, we have proposed a bundled cross-organizational

exception-handling scheme. Exception knowledge sharing partly solves the

heterogeneity problems we have identified in this paper. The five exception handling

modes capture the possible interaction means in cross-organizational exception

handling processes to meet various business requirements. Intelligent problem solver

helps populate the CPR exception handler. It is based on the techniques of case

based reasoning. The essence of CBR is that similar problems can be solved by

similar solutions. Does it really work for exception handling? In the following, we will

show our evaluation of the applicability of CBR in our exception handling system. The

result is encouraging.

This evaluation is conducted upon the analysis of CBR mechanism. There are

two assumptions upon which CBR is based. One is that problems tend to re-occur.

The other assumption is that prior obtained solutions are applicable for similar

problems. Therefore, to prove the applicability of CBR in exception handling, it is

necessary to show that (1) problems in cross-organizational business processes tend

to re-occur, and (2) solutions to previous problems can be applied to similar re-

occurring problems.

To evaluate the applicability of CBR in exception handling, we have conducted

two experiments. These two experiments are used to test the problem re-occurrence

rate, and to understand the distribution of problem re-occurrences. Moreover, we give

an analysis about the relationship between encountered problems and their solutions.

128
In the first experiment, we build the telecommunication workflow application,

and execute it as usual. Then we do nothing to the occurring exceptions but record

them. There are total 122 exception records. To calculate the re-occurrence rate, we

classify the exceptions according to their types. Among these exceptions, we have

found that each exception occurred at least twice in one run. Majority of these

exceptions’ re-occurrence rate is about 16 per run.

In the second experiment, we build another application, and execute it as

usual. Again, we do nothing to the occurring exceptions but record them. There are a

total of 149 exception records. This newly built application contributes 27 additional

exceptions. To understand these exceptions, we classify the exceptions according to

their types and workflow applications. Among these exceptions, we have found that

each exception occurred at least twice in one run. We have also found that majority of

these exceptions’ re-occurrence rate depends on the number of tasks in workflow

applications. This finding is very interesting. By conducting this simple histogram

analysis of exceptions, we have obtained several useful insights about these

exceptions:

• If an exception only occurs in one application, but not others, it is usually

caused by application dependent problems.

• If an exception occurs in every application, it is usually caused by problems

in the workflow management system components.

• If the re-occurrence rate of an exception is low, this exception is usually

caused by application dependent problems.

• If the re-occurrence rate of an exception is high, this exception is usually

caused by workflow system problems.

129
CBR, which is used to find these kinds of exception patterns, will add great

value to the exception handling coordinator.

In the following sections, we will describe our analytical assessment, use-cases

assessment, and experimental assessment over the exception handling system. In

analytical assessment, we have built a mathematical model to understand what a

promising technique CBR is. By using use-cases assessment, we have identified the

impact of implementing exception handling in cross-organizational setting upon the

ORBWork WfMS. We have also identified the weakness of the ORBWork workflow

management system. We have also designed five workflow applications to test various

aspects of the exception handling system, which are discussed next.

• Number of process instances that can be run in the modified ORBWork

WfMS will be tested in the first experiment.

• We will test the number of process instances that can be run in the modified

ORBWork WfMS after there is an exception has been handled by the

exception handling coordinator in the second experiment.

• The application exception propagation will be tested in the third experiment.

• An exception will be generated for each process instance. It will be handled

by the exception handling coordinator. The number of process instances

that can be run in this situation will be tested in the fourth experiment.

• The adaptability of the exception handling system will be tested in the fifth

experiment.

ANALYTICAL ASSESSMENT

Here we use a mathematical model based assessment to understand the CBR

problem solving capability. To understand whether similar problems have similar

130
solutions, we have created a problem-solution (P-S) matrix. By using this P-S matrix,

we obtained four types of relationships between problems and their solutions:

• Similar problem, similar solution. If similar problems can be solved by

similar solutions, CBR is the perfect problem solving mechanism.

• Similar problem, different solution. To apply CBR in this situation, an

understanding must be achieved about these different solutions. Can these

different solutions be reduced to similar solutions? If yes, CBR is applicable.

Otherwise, the common intersection among these different solutions must

be found. Human involvement intervene is necessary if no intersections can

be found.

• Different problem, similar solution. To apply CBR in this situation, an

understanding must be achieved about these different problems. That is,

CBR should adapt to different situations. Because these difference

problems have similar solutions, it is similar to the cases of similar problems

having similar solutions.

• Different problem, different solution. In this situation, problems must be

solved case by case. The problem solving capability of CBR increases with

its case base size. Human intervenes is necessary when the problems are

solved at the time of their first occurrences.

We can assume the probability distributions of the problems, and the handling

capability of the system. Then we can conduct mathematical calculation to get the

insightful ideas about the CBR problem solving capabilities.

Initially,

• The distribution probability of "similar problem, similar solution" is pss.

• The distribution probability of "similar problem, different solution" is psd.

131

• The distribution probability of "different problem, similar solution" is pds.

• The distribution probability of "different problem, different solution" is pdd.

The sum of these probabilities should be 1. That is, pss + psd + pds +pdd =1

Now we are going to show psd will not be zero. If we assume psd can be zero,

this means once we solve a problem, it can be used to match other similar problems.

This means that using prior gained experiences can solve these problems. However,

not all problems are solvable. There exist some problems that are not solvable

according to time and space constraints. There are problems that can nt be solved

even by experts. Thus, it is not possible to get a problem-solution pair for all the

problems. So psd will be larger than 0.

The best chance for us is how we can transfer problems from other categories

to the category of "similar problem, similar solution". We can assume the transition

probability from each category to "similar problem, similar solution". The reason is

once a problem is encountered by the system, it is known to the system. Later it is

possible that a similar problem may be encountered again.

The transition probability of from "similar problem, similar solution" to "similar

problem, similar solution" is 1. This is because they are in that category.

The transition probability of from "similar problem, different solution" to "similar

problem, similar solution" is psd-ss. Usually it is always 0. This is because for a recurring

similar problem, always a different solution from the one contained in the prior

encountered case is needed.

The transition probability of from "different problem, similar solution" to "similar

problem, similar solution" is pds-ss. This transition is possible because once a problem is

met, it become a base for the similarity match. If this kind of problems always has

solutions, pds-ss is larger than 0. The transition probability of "different problem, similar

132
solution" to "similar problem, different solution" is pds-sd. The sum of the transition

probabilities of pds-ss and pds-sd is 1. That is, pds-ss + pds-sd = 1. Usually pds-ss > pds-sd holds.

Similarly, the transition probability of "different problem, different solution" to

"similar problem, similar solution" is pdd-ss. This transition is possible because once a

problem is met, it become a base for the similarity match. If this kind of problems

always have similar solutions, the pdd-ss is larger than 0. The transition probability of

"different problem, different solution" to "similar problem, different solution" is pdd-sd.

The sum of the transition probabilities of pds-ss and pds-sd is 1. That is, pds-ss + pds-ss = 1.

Usually pdd-ss < pdd-sd holds.

Now it is possible to calculate the evolving distribution probability of "similar

problem, similar solution" and "similar problem, different solution". Once a new

problem is encountered, the distribution probability of it belonging to "similar problem,

similar solution" is:

• pss if the encountered problem belongs to "similar problem, similar solution".

• 0 if the encountered problem belongs to "similar problem, different solution".

This is because there is no transition from "similar problem, different

solution" to "similar problem, similar solution".

• (pds-ss * pds) if the encountered problem belongs to "different problem, similar

solution". This is because the distribution probability of "different problem,

similar situation" is pds. Considering the transition probability of pds-ss, the

final probability of the encountered finally belonging to "similar problem,

similar solution" is (pds-ss * pds).

• (pdd-ss * pdd) if the encountered problem belongs to "different problem,

different solution". This is because the distribution probability of "different

problem, similar situation" is pds. Considering the transition probability of

133
pdd-ss, the final probability of the encountered finally belonging to "similar

problem, similar solution" is (pdd-ss * pdd).

So once a new problem is encountered, the new distribution probability of

"similar problem, similar solution" is (pss * 1) + (psd * 0) + (pds-ss * pds) + (pdd-ss * pdd).

Similarly we can obtain the new distribution probability of "similar problem, different

solution" when a new problem is encountered. It is (psd * 1) + (pss * 0) + (pds-sd * pds) +

(pdd-sd * pdd).

The evolving rate of the distribution probability of "similar problem, similar

situation" is (pds-ss * pds) + (pdd-ss * pdd). The evolving rate of the distribution probability of

"similar problem, different situation" is (pds-sd * pds) + (pdd-sd * pdd).

From this analysis, we can draw the following conclusions:

• CBR cannot be used to solve all the problems.

• The best CBR problem solving capability is 1- psd. psd is pre-determined by

the capability of both human and computing systems.

• (pds-ss * pds) and (pdd-ss * pds) denote the possible capability gain for CBR.

Initially the sum of (pds + pdd) is 1, which means no cases exist in the case

repository.

• For (pds-ss * pds) type problems, CBR system needs strong adaptation

capability to the problems.

• For (pds-ss * pds) type problems, CBR system needs strong adaptation

capability to the both problems and solutions.

When we are applying this CBR based exception handling system to handling

exception in various applications or domains, we can use this P-S matrix to analyze

the effectiveness of this exception handling system. The effectiveness or applicability

is determined by the probability distribution, i.e. the above parameters such as pss, pds ,

134
psd, pdd , etc. in the P-S matrix. This matrix should be able to obtain through statistical

analysis or through simulation.

USE-CASES ASSESSMENT

Use-cases technique [Kulak and Guiney 2000] is usually seen as a requirement

analysis tool for describing and verifying system functionality. Here we use it to access

system quality attributes. This technique is directly dependent on the profile defined for

the quality attributes that are to be assessed. Its effectiveness is largely dependent on

the representatives of the use case scenarios. The reason that we use use-cases is

that the system architectural design will be optimized for this set of use-cases. Since

we don't have a similar cross-organization systems to compare, this use-case based

assessment is used for comparing ORBWork with cross-organizational exception

handling capability and the ORBWork without exception handling capability.

By using use-case techniques, we have conducted impact analysis, i.e., the

numbers of lines of code affected to the ORBWork code. Since performance needs

quantity-based assessment, we will use experimental assessment to evaluate the

system properties. Here we will use five scenarios to evaluate ORBWork system's

capability in supporting exception handling in cross-organizational settings.

IMMEDIATE MODE SCENARIO

We re-draw the scenario we have for describing immediate exception handling

mode in the coordinated exception-handling chapter. As shown in the Figure 10.1, SPs

route their bandwidth change requests to L3 due to customer needs growth. They will

immediately get an exception in case L3 determines that requested bandwidth range is

not existing. This exception is generated by database system because the database is

happy with the entry contained in the request - database statement has no results.

135
We have tried to implement this mode of exception handling. We have found

that this type of exception handling mode is most suitable for those well-known

exceptions with well-known exception handlers. Thus, once we have identified those

well-known exceptions with well-known handlers, it is possible to put them directly into

the system code section by using try-catch blocks. This mode works in tight-coupled

systems. However, this also makes it inflexible.

SP EHC L3

Bandwidth change request

Bandwidth change request

Entry error

Figure 10.1 Immediate mode of cross-organizational exception handling

The rethrow handling scheme that can be designed through workflow designer

is working in immediate exception handling mode. Designer does not support other

local exception handlers at this time except retry and email.

136
DEFERRED MODE SCENARIO

Customer EHC SP

Subscription request

No credit history

Credit report

Perform the request

Figure 10.2 Deferred mode of cross-organizational exception handling

We re-draw the scenario we have for describing deferred exception handling

mode in the coordinated exception-handling chapter. As shown in the Figure 10.2, SPs

route its customers’ bandwidth requests to L3. L3 will not raise exception immediately

to these SPs when it determines that not enough credit information is available along

with the request. Instead, L3 will fulfill the request, and later raise the exception to SPs

through the same two-way interaction point.

We have tried to implement this type of exception handling mode. But clearly

the ORBWork workflow management system does not support this type of

coordination. A coordination scheme similar to nested sub-workflow instance

interoperability needs to be supported.

DE-COUPLED MODE SCENARIO

We re-draw the scenario we have for describing de-coupled exception handling

mode in the coordinated exception-handling chapter. As shown in the Figure 10.3, SPs

route their bandwidth requests to L3 through a one-way interaction point. L3 will try to

137
fulfill the request. However, when L3 finds that the requested 514KBPS channel is not

available, it needs to raise this exception to SPs. Since there is no other interaction

points between them, L3 needs to raise it to SPs through the exception handling

coordinator.

We have implemented this type of exception handling mode. We have found

ORBWork workflow management supports it quite well, following several

implementation-specific changes to the ORBWork. In the current ORBWork

implementation, in case of task failure or abort, along in the exception propagation

route, all the workflow instances will be removed from the task schedulers. So we need

to register and make a reference copy of these instances. During the de-coupled

exception handling, these instances will be used.

SP EHC L3

Bandwidth change request

Entry error

Bandwidth change request

Entry error

Figure 10.3 De-coupled mode of cross-organizational exception handling

FREE MODE SCENARIO

We re-draw the scenario we have for describing immediate exception handling

mode in the coordinated exception-handling chapter. In the Figure 10.4, SPs route its

customers’ bandwidth requests to L3. L3 will not raise exception SPs if it determines

138
that too many (not realistic) channels are typed in along with the request. Instead, L3

will fulfill the request partially, and later raise the exception to SPs through another

interaction point determined by the exception handling coordinator.

Currently ORBWork implementation does not support this type of exception

handling mode yet. However, with the implementation of the dynamic changes, this

type of coordination can be supported in the future ORBWork implementations. One of

the key changes is to add an exception object to the normal flow. There are several

process analyses going on when an exception object is added, such as termination,

reach-ability, etc. Another key change to be made is to detect that there is an

exception object in the normal flow data.

SP EHC L3

Bandwidth change request

Entry errorEntry error

Figure 10.4 Free mode of cross-organizational exception handling

CLOSE MODE SCENARIO

We re-draw the scenario we have for describing immediate exception handling

mode in the coordinated exception-handling chapter. In the Figure 10.5, SPs

determines the service quality provided by L3 is not satisfactory, since interaction

139
between them is not possible at this time, SP will raise an exception through exception

handling coordinator (EHC). EHC can at least record the exception for later use.

SP EHC L3

Quality concern

Figure 10.5 Close mode of cross-organizational exception handling

Current ORBWork and exception handling system implementation support this

type of coordination. The challenge here after the exception is recorded, how much

benefit it can provide besides statistical analysis. This is dependent on the system

users.

EXPERIMENTAL ASSESSMENT

To get more quantitative assessment, we have conducted experimental

assessment over the exception handling system. This is made possible because we

have implemented all the components of the system architecture (see Figure 9.1) and

we have all the context of the system. We have designed five different applications to

assess whether the system functions correctly or not in different circumstances.

Experimental assessment complements the use-cases based approach in that

experimental assessment is particularly useful for evaluating operational quality

attributes, such as performance of exception handling by actually executing the system

140
implementation, whereas use-cases are more suited for evaluating development

quality attributes, such as flexibility.

EXPERIMENT DESIGN

There are three types of exceptions, infrastructure exception, workflow system

exception, and application exception. However, for system exceptions, if they are

caused by implementation error, then there is a danger of losing control in the

experiment. The exceptions may get lost. Because of wrong implementation, the

system can not work correctly. So instead of testing system exceptions, we have

designed experiments to test whether the system is running correctly. If the system is

tested to be correct, we go on testing infrastructure exceptions and application

exceptions.

In virtually all experiments, some considerations have to be given to the

number of repeat tests for the ORBWork workflow management system. A balance

has to be struck between the marginal cost per experimental test and the increase in

precision achieved per additional test. Except in rare instances where these costs can

both be quantified, a decision on the size of experiment is largely a matter of

judgement. Some of the more formal approaches to determining the size of experiment

usually have spurious precision. Though it is very desirable to make an advance

approximate calculation of the precision likely to be achieved, it is usually hard to

obtain. We set the maximum size (around 100 workflow instances) of the experiment

by our observations. We use two Dell machines. One is running at 466Mhz with

128MB main memory. The other is running at 400Mhz with 256MB main memory. Both

machines have Microsoft Window NT operating system (Version 4.0) installed.

141
EXPERIMENT - SERVICE SUBSCRIPTION APPLICATION

APPLICATION DESCRIPTION

Currently, most large DSL companies sell directly to large business or through

telecommunication resellers, such AT&T, and indirectly to residential customers and

small business users via ISPs. As shown in Figure 10.8, ender users (residential users

and small business users) subscribe to ISP resellers. These resellers then need to

have the order pre-qualified by Digital Local Exchange Carrier (DLEC). These orders

again need to be routed to Incumbent Local Exchange Carriers (ILEC). Once they are

confirmed and delivery date has been determined, the subscribers will be notified.

EXPERIMENT PURPOSE

This experiment is used to test the effects caused by the changes we have

made to the ORBWork system. As mentioned in the use-cases assessment, some

changes were made to support handling exceptions in cross-organizational settings. In

this experiment, we have tested how many instances can potentially run in the system.

Our target is to set to one hundred workflow instances running in the system.

EXCEPTION GENERATION

We do not generate exceptions in this experiment. The ORBWork system is

running as normal, i.e., no exceptions are generated on purpose.

RESULT EVALUATION

We were able to generate more than one hundred workflow instances at almost

the same time. This is because we don't have parallel machine, the instances were

actually generated one by one. Because the instance completion time is much longer

than the instance generation time, we consider they are generated at almost the same

time. The system was working fine. However the machine on which the test was

conducted was running very slow. This is partly because that the machine is not fast

142
enough (the main frequency is about 466MHZ) and the main memory is not big

enough (about 128MB). Besides this, we have found that for each executing task,

there is a virtual JAVA machine running for it. So the throughput of the systems can be

evaluated against the number of the tasks in the workflow.

Figure 10.6 Service subscription workflow

EXPERIMENT - DSL APPLICATION

APPLICATION DESCRIPTION

Line sharing and collocation rules are the outgrowths of the Telecommunication

Act of 1996. It is designed to promote competition in the telecommunication market.

Because of this Act, major DSL providers plan to begin simpler installations of their

high speed data services, courtesy of a government mandate requiring local phone

companies to share their lines with DSL providers. As shown in Figure 10.8, end users

143
(residential users and small business users) subscribe to ISP resellers. These resellers

then only need to have the order pre-qualified by DLEC. Once they are confirmed and

their existing phone line has bee upgraded, the subscribers will be notified.

Figure 10.8 dsl subscription workflow

EXPERIMENT PURPOSE

This is the experiment used to test the correct execution of ORBWork system

after failures have been remedied.

EXCEPTION GENERATION

To generate an exception that can be handled by the ORBWork system, we

have tried several approaches. Finally we found that if we supply an incorrect or

inappropriate statement to the database systems (we are using Mini-SQL database

server), an exception will be thrown.

144
RESULT EVALUATION

After we had generated the exception and handled it, we were able to generate

about one hundred workflow instances almost at the same time. This result is

comparable to the experiment conducted using the service subscription workflow.

APPLICATION DESCRIPTION

We re-draw the infant transportation application in Figure 10.9. This infant

transportation application involves the transportation of a very low birth weight infant

from a rural hospital to the Neonatal Intensive Care Unit (NICU) at the Medical College

of Georgia (MCG). More detailed information about application is given in Chapter 1.

EXPERIMENT PURPOSE

In this experiment, we plan to test application exception handling. That is,

application designers will design application exceptions using the exception editor. The

application designers are responsible to provide mappings between the application

exceptions and workflow system exceptions. Designers are also responsible to supply

handling schemes. Currently there are three schemes supported by exception

designer: retry, re-throw, and email. To test the exception handing system, we use the

exception-handling designer to design exception re-throw scheme so a re-thrown

exception can be propagated to the exception handling system. Re-throw in essence is

a mapping among exceptions. Application designers can use re-throw to provide

mappings from one type of exception to another type of exception.

EXPERIMENT - INFANT TRANSPORTATION APPLICATION

EXCEPTION GENERATION

To generate exceptions, we removed a task from the system. When that

removed task is asked to provide services, a null pointer exception will be generated

because the requested task is not in the system. The application designers are

145
responsible to provide mappings between their application exceptions and the system

exceptions generated.

Figure 10.9 Infant transportation workflow

RESULT EVALUATION

We have designed about eight-application exception to infrastructure

mappings. We have obtained them all. This means the re-throw exception-handling

scheme is working. The workflow designer can choose to map a workflow system

exception to an application exception that may be more meaningful to end-users.

EXPERIMENT - LEVEL 3 TELECOMMUNICATION INFRASTRUCTURE PROVIDER APPLICATION

APPLICATION DESCRIPTION

We re-draw the level 3-telecommunication application in 10.10. In this

application, Level 3 (L3) offers on-demand bandwidth service to let contracted service

146
providers (SP), such as ISP and DSL providers accommodate their customers’ new

data and voice applications. More detailed information about this application can be

found in Chapter 1.

Figure 10.10 Level 3-telecommunication infrastructure provider application workflow

EXPERIMENT PURPOSE

In this experiment, we test how many workflow instances can be running with

exception handling system always participating in the workflow execution. That is, for

each instance, there is an exception occurring. This exception will then be propagated

to the exception handling system. This means, the exception handling system is

participating in each workflow instance execution.

147
EXCEPTION GENERATION

TO GENERATE AN EXCEPTION THAT CAN BE HANDLED BY THE ORBWORK SYSTEM, WE HAVE

TRIED SEVERAL APPROACHES. WE FOUND THAT IF WE SUPPLY AN INCORRECT OR

INAPPROPRIATE STATEMENT TO THE DATABASE SYSTEMS (WE ARE USING MINI-SQL DATABASE

SERVER), AN EXCEPTION WILL BE THROWN.

Online Performance of Exception Handling System

0

50

100

150

200

250

300

Workflow instance

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Series1

Series1 280.6 26.31 29.26 67.37 67.37 65.82 67.06 67.22 30.22 68.59 67.95 74.97 26.89 26.65 100.5 26.18 28.96
1 8 14 21 28 35 41 48 55 61 68 75 81 88 95 102 108

Figure 10.11 Execution time of the handling exceptions

RESULT EVALUATION

In this test, we were able to generate about 108 workflow instances with

concurrently running exception handling system. The average exception resolution

time is about 54 seconds. The exception resolution time includes record generation

time, case retrieval time, case analysis time, and CPR execution time. Compared with

the ORBWork system without exception handling system currently running for each

workflow instance, the system in this experiment is slower. We have found the reason

148
through the viewing the memory usage under NT's task manager. The main memory is

one of the factors. We can see that the execution time for several workflow instances

is quite large. The reason is because when the system is first started, much time

needs to be spent on the system preparation, such as loading up object.

Online performance with memory clearance

0

50

100

150

200

Workflow instance

Re
sp

on
se

 tim
e (

se
co

nd
)

Series1 41 33 30 31 28 26 39 32 76 76 120 180180 180 31 30

1 9 18 26 34 43 51 59 68 76 84 92 101 109117 126

Figure 10.12 System performance with cooperating exception handling

To improve the system performance, we have conducted another experiment to

test the exception handling system with memory clearance. As discussed above,

memory is one of the major factors affecting the performance of the exception handling

system, if we can collect unused memory spaces and release them, then we can

improve the system performance. However, there is no implicit memory free means in

JAVA like in C/C++. So we have decided to use multiple exception handling

coordinators with each operating at one time. When one exception handling

coordinator reaches the performance threshold, another exception handling

149
coordinator will be used. This solves the memory release problem. We call this

cooperating exception handling. The performance is shown in Figure 10.12.

From the figure 10.12, when one of the cooperating exception handling

coordinator reaches the performance threshold which can be configured, another

coordinator will be active and all the exceptions will be routed to this new coordinator

to reduce response time. The threshold should be based on historical data or

simulations. In the Figure 10.12, it is quite clear that the threshold should be set to 50

seconds. This threshold represents the best performance of current exception handling

coordinator implementation. Further improvements can be achieved by reducing

memory usage by the implementation, and using more advanced case operation

algorithms in the implementation.

EXPERIMENT - FUTURE AND STOCK TRADING APPLICATION

APPLICATION DESCRIPTION

In 1980s, the Securities & Exchange Commission (SEC) was particularly

concerned that NASDAQ market makers were offering better quotes via private trading

systems or electronic communications networks (ECN), which cater mainly to

institutional investors, than they were to the general public. To fulfill their disclosure

obligations the ECNs are required to make their best quotes publicly available on the

NASDAQ. This rule change paved the way for the ECNs to make all the prices they

carried visible to the public, making the ECNs attractive alternatives for investors.

Since the SEC issued rules to require market makers to publicly display their best

prices for each issue, the pricing has been becoming more and more transparent. At

the same time, with the fast development of computer and networking technology,

computerized trading has been a reality. The volatile market environment offers the

opportunities for so called day traders to maximize their trading capital by avoiding the

150
need to post overnight margins. When the trading becomes so easy, there is more

and more on-line day trading over the Internet. The trading workflow is shown in Figure

10.13.

EXPERIMENT PURPOSE

We have tested level 3 application and have obtained a lot of cases. In this

experiment, we test the adaptation capability of exception handling system.

EXCEPTION GENERATION

To generate exceptions, We removed a task from the system. When that

removed task is asked to provide services, a null pointer exception will be generated

because the task is not in the system.

Figure 10.13 Future and stock trading application workflow

151
RESULT EVALUATION

We found that the adaptation capability of the cases is very limited. We have

tested another workflow application with only one task in it. We stored the case in the

case repository. When we tested this workflow application, we found that there was no

adaptation at all. The solution provided by the old case will not work in the new

situation. The following are the reasons we found:

• ORBWork is limited in adaptation. It is not easy to change the workflow.

Human always needs to participate in the workflow changes. We don't want

a solution that always needs a human to be present. High degree of

automation is our goal.

• ORBWork currently does not provide query facility to query the specification

and instance information about workflows, such as the preceding tasks and

succeeding tasks for a given task, task activation parameters, etc. Because

lack of this kind of information, it is hard for the exception handling system

to generate an adaptable case.

In our original design, we did not consider these factors. We encountered

failures of the exception-handling scheme derived by the exception handling system

with almost every application we tried to test. After that, we designed a total new case

structure in which there is an entry to denote whether the exception handling scheme

is adaptable, and at what degree it is adaptable. In the CPR data structure, there is an

entry called CPR_Name. It denotes the adaptability of this CPR. Usually there are four

levels of adaptability denoted by strings of "_ehc_wfa", "_ehc_wfo", "_ehc_wfi" and

"ehc_wft". If the CPR name ends with "_ehc_wft", it denotes the CPR scheme is

adaptable. This CPR scheme can be used without any human intervention and can be

applied across tasks, instance, and workflow types. For CPR names end with other

than "_ehc_wft", the situation is more complicated. A CPR with a name ending with

152
"_ehc_wfa" is not adaptable at all. A CPR with a name ending with "_ehc_wfi" is

adaptable only for this same task in the same workflow type. A CPR with a name

ending with "_ehc_wfo" is limited in adaptation. Human involvement is needed to be

present to make changes to the CPR.

CONCLUSION AND FUTURE CONSIDERATIONS

In this dissertation, we have presented our research of cross-organizational

workflow exception handling based on our understanding of the cross-organizational

business operation environment. A bundled exception handling mechanism is

proposed for exception handling across organizational boundaries. This exception

handling technique bundles three techniques, exception-handling knowledge sharing,

coordinated exception handling, and intelligent problem solving.

SUMMARY

In this approach, the exception handling experience is shared among different

organizations. For example, in the service subscription workflow, one of the

exceptional situations is that credits history of the service requestor can not be verified,

or it cannot be obtained in a timely manner. When this exception happens, the service

subscription will often be delayed. If there is a good practice stored in the shared

repository, by using the shared exception handling knowledge, the exception handling

process can be very efficient.

Five exception handling coordination modes have been identified to meet the

business needs. Business processes need coordination, so do the exception handling

processes. For example, one of the five coordination modes is deferred exception

handling. In this mode, when the service provider discovers that not enough money is

supplied with the service request, the requested services will still be fulfilled. At a later

153
moment, the service provider will raise an exception to the service requestor. This

mode is proposed based on the principle of "customer satisfaction is the first priority".

The business processes are deployed to provide added values. They must be

defined, maintained, and improved in alignment with the strategic management goals.

Business process needs to be deployed flexibly as intended. To continuously improve

the business process, the process must be well understood so its properties are

evaluated, modifications are allowed, and future changes can be predicted. We view

this continuous improvement process as a knowledge management assisted decision-

making process. This process involves knowledge acquisition and problem solving. To

achieve this goal, process histories are recorded and process knowledge is extracted.

Process knowledge acquired will be used in incremental process improvement. Special

attention is paid to process exceptions in this paper. While data mining over normal

process working histories can extract business patterns and trend, exceptional

situations usually directly denote when and where process improvement can be

achieved.

Among many intelligent problem-solving techniques, we have identified that

CBR is a promising technique. In implementing CBR as an intelligent problem solver

for handling exceptions, we have found that it is necessary to combine default

reasoning with CBR to achieve the results we need. In many situations, item values in

the cases may be missing, or context information is not enough. Default reasoning

helps solve this kind of problems.

A compensation preceding rework (CPR) is proposed as the exception-

handling template in this dissertation in handling cross-organizational exceptions. The

intelligent problem solving capabilities developed are used to populate this CPR

template to adapt to the exception situations. That is, experience is shared, new

situation is analyzed, and a new handler is derived. To automate the handling process,

154
we have identified several modes of exception handling coordination. At the same

time, we greatly value the importance of human involvement in the exception handling

process. Thus, a GUI exception-handling client is developed so human beings can

participate in the exception handling process.

We have conducted analytical assessment, use-cases assessment, and

experimental assessment over our exception handling system. In analytical

assessment, we have built a mathematical model to understand what a promising

technique CBR is. By using use-cases assessment, We have identified the impact

upon ORBWork WfMS by implementing our exception handling schemes. We have

also identified several weakness points of the ORBWork workflow management

system.

We have built five workflow applications to test our exception handling system.

They are from three industry sectors: telecommunication, healthcare, and financial

business. They are DSL service subscription application before and after the ACT of

Telecommunication 1996, Level 3 IP network service workflow, infant transportation

workflow, and stock and future trading workflow. We have generated more than 100

cases in testing our system.

The result of the assessments has shown us what a promising system our

exception handling system is. It has also shown that the effectiveness of our exception

handling systems is strongly co-related to the dynamic change capabilities of the

WfMSs. If a specific WfMS is weak in adapting to the changing environment, our

exception handling system will also be limited in adaptation. In such cases, though our

exception handling system can propagate exceptions across organizational

boundaries, the actual exception handling schemes (CPR) can only be used for the

exact same situations encountered before.

155
FUTURE DIRECTIONS

This work has three major future work directions. Since we only know the

possible directions of our future work, we are going to list them here.

• Survivable computing and flexible process interactions. As identified in

dissertation, current WfMSs can not support very flexible business

processes. Future efforts need to be on this topic. However, it is always

beneficial to identify to what extent the processes will be flexible. That is,

what are the real needs from real world for a flexible mechanism to enact

flexible processes? It is very rare in current literature to find descriptions on

enactment for flexible business processes. That is why in our approach, we

have identified five interconnection patterns for handling exceptions across

organizational boundaries. Furthermore, since the case repository stores

prior knowledge, it should be exploited how this knowledge can be used to

enhance not only a system's exception handling capability, but also

survivability and flexibility.

• Improving the system by learning from the exceptions. Once the cases

have been obtained, we still need criteria for when and how the systems

can be improved based on what we learned. That is, when should we

modify the system based on these cases?

• Construction of processes based on the cases obtained. Case repository

can hold hundreds of cases. Besides using these experiences for handling

exceptions, it is also very interesting to construct new processes by using

the cases obtained.

156

REFERENCE

[Aamodt 1994] A. Aamodt, “Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches”, Artificial Intelligence

Communications, IOS Press, Vol. 7: 1,1994

[Adam et al 1999] N Adam, O Dogramaci, A Gangopadhyay, Y. Yesha,

Electronic Commerce, Technical, Business, and Legal Isues, Prentice Hall PTR, 1999

[Alonso et al 1999] G. Alonso, U. fiedler, C. hagen, A. Lazcano, H. Schuldt, and

N. Weiller. Processes in lectronic Commerce. In ICDCS Workshop on Electronic

Commerce and Web-based Applications, Austin, Texas, May 1999

[Baralist et al 1995] E. Baralist, S. Ceri, and S Paraboschi. “Improved Rule

Analysis by Means of Triggering and Activation Graphs”, In Timos Sellis, editor, Proc.

Of the Second Workshop on rules in Database systems, LNCS 985, P 165-181,

Athens, Greece, September 1995

[Berry, Myers 1998] Pauline M. Berry, Karen L. Myers; "Adaptive Process

Management: An AI Perspective", CSCW 1998, Towards Adaptive Workflow

Workshop, Seattle, WA 1998

[Borgida 1999] A. Borgida, T. Murata, “Tolerating Exceptions in Workflows: a

Unified Framework for Data and Processes”, Proceedings of the International Joint

Conference on Work Activities coordination and Collaboration, WACC’99, February 22-

25, 1999, San Francisco, CA

[Cichocki et al 1997] A. Cichocki, A. Helal, M. Rusinkiewicz, D. Woelk,

“Workflow and Process Automation: Concepts and Technology”; Kluwer Academic

Publishers ISBN 0-7923-8099-1 December 1997

157
[Cichocki et al. 97]A. Cichocki and M. Rusinkiewicz, Migrating Workflows,

Advances in Workflow Management Systems and Interoperability, Istanbul, Turkey,

August 1997.

[Ceri et al 1997] S. Ceri, P. Grefen, and G. Sanchez, “WIDE: A distributed

architecture for workflow management”, in Proceedings of RIDE 1997, Birmingham,

UK, April 1997

[Carlsen and Jorgensen 1998] S. Carlsen and H. Jørgensen, Emergent

Workflow: The AIS Workware Demonstrator, CSCW98, towards adaptive workflow

systems, Seattle, WA 1998

[Casati et al 1998] Casati, F.; Ceri, S.; Pernici, B.; Pozzi, G.; Workflow

Evolution. Data & Knowledge Engineering, 24(3), Jan. 1998, pp. 211-238

[Casati et al 1999] Fabio Casati, Mariagrazia Fugini and Isabelle Mirbel, An

Environment for Designing Exceptions in Workflows, Information Systems, Vol. 24, No.

3, pp255-273 1999

[Ceri et al 1997] S. Ceri, P. Grefen, and G. Sanchez, “WIDE: A distributed

architecture for workflow management”, in Proceedings of RIDE 1997, Birmingham,

UK, April 1997

[Cox and Reid 2000] D.R. Cox and N. Reid, The theory of the Design of

Experiments, Chapman & Hall/CRC, 2000

[CrossFlow] CrossFlow. www.crossflow.org

[Das et al. +97] S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah,

ORBWork: A Reliable Distributed CORBA-based Workflow Enactment System for

METEOR2, Technical Report UGA-CS-TR-97-001, LSDIS Lab, CS Department, Univ.

of Georgia, February 1997

[Deiters et al 1998] Wolfgang Deiters, Thomas Goesmann, Katharina Just-

Hahn, Thorsten Loffeler, Roland Rolles; Support for Exception Handling through

158
Workflow Management Systems, , CSCW, Towards Adaptive Workflow, Seattle, WA

1998

[ebXML 2000] ebXML, http://www.ebxml.org/, November 5, 2000

[Eder and Liebhart 1998] J. Eder and W. Liebhart, “Contributions to Exception

Handling in Workflow Systems”, EDBT Workshop on workflow management Systems,

Valencia, Spain, 1998

[Ellis et al. 95] C. Ellis, K. Keddara, and G. Rozenberg, Dynamic Changes

within Workflow Systems in Proc. of the Conf. on Organizational Computing Systems

(COOCS’95)}, 1995.

[Elmagarmid 1992] Elmagarmid, A., editor, Database Transaction Models for

Advanced Applications, Morgan Kaufmann Publishers, Inc., San Mateo, CA 1992

[Forrester] www.Forrester.com

[Georgakopoulos et al 1995] D. Georgakopoulos, M. Hornick, and A. Sheth,

“An Overview of Workflow Management: From Process Modeling to Workflow

Automation Infrastructure”, Distributed and Parallel Databases, 3(2):119--154, April

1995

[Georgakopoulos et al 1999] D. Georgakopoulos, H. Shuster, A. Cichocki, and

D. Baker. Managing Process and Service Fusion in Virtual Enterprises. Information

systems, 1999

[Gray and Reuter 1993] Gray, J., Reuter, A.; Transaction Processing: Concepts

and Techniques, Mogan Kaufmann Publisher, San Mateo 1992

[Guimaraes et al. 97] N. Guimaraes, P. Antunes, and A. Pereira, The

Integration of Workflow Systems and Collaboration Tools, Advances in Workflow

Management Systems and Interoperability}, Istanbul, Turkey, August 1997.

http://www.ebxml.org/

159
[Gulla et al 1991] Gulla, J. A., Lindland, O. I., and Willumsen, G., ãPPP - An

Integrated CASE Environment,ä Third International Conference on Advanced

Information Systems Engineering (CAiSE'91), Trondheim, Norway, 1991.

[Hagen and Alonso 1998] C. Hagen, G. Alonso, “Flexible Exception Handling in

the OPERA Process Support System”, 18th International Conference on Distributed

Computing Systems (ICDCS), Amsterdam, The Netherlands, May 1998.

[Han et al] Y. Han, A. Sheth, and C. Bussler, a taxonomy of Adaptive Workflow

Management, CSCW98, towards adaptive workflow systems, Seattle, WA 1998

[Han 97] Y. Han, "HOON - A Formalism Supporting Adaptive Workflows,"

Technical Report #UGA-CS-TR-97-005, Department of Computer Science, University

of Georgia, November 1997.

[Han and Sheth 98] Y. Han and A. Sheth, "On Adaptive Workflow Modeling,"

the 4th International Conference on Information Systems Analysis and Synthesis,

Orlando, Florida, July, 1998

[Hermann 95] T. Hermann, Workflow Management Systems: Ensuring

Organizational Flexibility by Possibilities of Adaptation and Negotiation, in Proc. of the

Conf. on Organizational Computing Systems (COOCS’95)}, 1995

[IDSO 2000] CAiSE workshop on Infrastructures for Dynamic Business-to-

Business Service outsourcing, Stockholm, June 5-6 2000

[Joeris and Herzog 1998] Joeris, G.; Herzog, O.: Managing Evolving Workflow

Specifications. Proceedings of CoopIS'98, New York, August 1998

[Jablonski et al. 97] S. Jablonski, K. Stein, and M. Teschke, Experiences in

Workflow Management for Scientific Computing, Proceedings of the Workshop on

Workflow Management in Scientific and Engineering Applications (at DEXA97),

Toulouse, France, September 1997.

[JFLOW] OMG jFlow Submission, ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf

ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf

160
[Kang et al 1999] Myong H. Kang, Judith N. Froscher, Amit P. Sheth, Krys

Kochut, John A. Miller: A Multilevel Secure Workflow Management System. CAiSE

1999: 271-285

[Ketan 1999] Ketan Aroon Bhukhanwala, "JFLOW : workflow interoperability for

the METEOR workflow management system", Thesis (M.S.), University of Georgia,

1999.

[Krishnakumar and Sheth 95] N. Krishnakumar and A. Sheth, “Managing

Heterogeneous Multi-system Tasks to Support Enterprise-wide Operations,”

Distributed and Parallel Databases Journal, 3 (2), April 1995

[Klein et al 1998] M. Klein et al., Proceedings of CSCW-98 Workshop Towards

Adaptive Workflow Systems, Seattle, WA, 1998

[Klein and Dellarocas 1998] M. Klein and C. Dellarocas, A Knowledge-Based

Approach to Handling Exceptions in Workflow Systems, Proceedings of CSCW-98

Workshop Towards Adaptive Workflow Systems, Seattle, WA, 1998

[Klein 2000] Mark Klein; Towards A Systematic Repository of Knowledge about

Managing Multi-Agent System Exceptions, Working Paper, ASES-WP-2000-01, Center

for Coordination Science, MIT, Cambridge, MA February 2000

[Kochut et al 1999] K. Kochut, A. Sheth, and J. Miller, "Optimizing Workflow,

Using a CORBA based, Fully Distributed process to Create Scalable Dynamic

Systems", Component Strategies, March 1999, pp 45-57

[Krishnakumer and Sheth 1995] N. Krishnakumar, and A. Sheth, “Managing

Heterogeneous Multi-system Tasks to Support Enterprise-wide Operations”, Journal of

Distributed and Parallel Database Systems, 3 (2), April 1995

[Kulak and Guiney 2000] D. Kulak and E. Guiney, "Use cases: requirements in

context", New York: ACM Press; Boston: Addison-Wesley, c2000

161
[Lazcano et al 2000] A. Lazcano, G. Alonso, H. Schuldt, C. Schuler: The WISE

approach to Electronic Commerce. International Journal of Computer Systems Science

& Engineering, special issue on Flexible Workflow Technology Driving the Networked

Economy (to appear in September 2000).

[Leymann and Roller 2000] F. Leymann, D. Roller: Production Workflow:

Concepts and Techniques, Upper Saddle River, Prentice Hall 2000

[Lin 97] C. Lin, “A Portable Graphic Workflow Designer,” M.S. Thesis,

Department of Computer Science, University of Georgia, May 1997.

[Liu and Pu 1998] Liu, L., Pu, C.: Methodical Restructuring of Complex

Workflow Activities. Proceedings of 14th Internatinal Conference on Data Engineering

(ICDE' 98), Orlando, Florida, February 1998, pp. 342-350

[LSDIS 2000] workflow repository, LSDIS Lab report, University of Georgia,

2000

[Ludwig 1999] Ludwig, H, Termination Handling in Inter-organisational

Workflows - An Exception Management Approach. In A. Antola (Ed): Proceedings of

the Seventh Euromicro Workshop on Parallel and Distributed Processing (PDP '99),

Funchal, February 1999, pages 122 - 129, IEEE Computer Society, Los Alamitos,

1999

[Ludwig and Whittingham 1999] H. Ludwig and K. Whittingham, “Virtual

Enterprise Coordinator – Agreement-Driven Gateways for Cross-Organizational

Workflow Management”, in Proceedings of the International Joint Conference on Work

Activities coordination and Collaboration, WACC’99, Februrary 22-25, 1999, San

Francisco, CA

[Ludig et al. 1999] H. Ludig, C Bussler, M. Shan, P. Grefen, Cross-

Organisational Workflow Management and Co-ordination Workshop Report, February

22nd 1999, San Francisco

162
[Luo et al 1998] Zongwei Luo, Amit Sheth, John Miller, Krys Kochut,

“Defeasible Workflow, its Computation, and Exception Handling”, Proceedings of 1998

Computer-Supported Cooperative Work (CSCW 1998), Towards Adaptive Workflow

Systems Workshop, Seattle, WA, 1998

[Luo 1999] Zongwei Luo, “Applying Workflow Technology in Trading Systems”,

Proceedings of the 12th International Conference on Computer Applications in Industry

and Engineering (CAINE-99), Atlanta, Georgia (November 1999)

[Luo 2000] Zongwei Luo, “Checkpointing for Workflow Recovery”, Proceedings

of ACM Southeast Conference (ACM SE 2000), Clemson, SC, April 2000, pp79-80

[Luo et al 2000] Zongwei Luo, Amit Sheth, Krys Kochut, and John Miller,

“Exception handling in workflow systems”, Applied Intelligence: the International

Journal of AI, Neural Networks, and Complex Problem-Solving Technologies, Volume

13, Number 2, September/October, 2000, pp125-147

[Marek and Truszczynski 1993] V. Marek, M. Truszczynski, Non-monotonic

Logic, Context-Dependent Reasoning, Springer-Verlag, 1993

[McClatchey et al. 97] R. McClatchey, J.-M. Le Geoff, N. Baker, W. Harris, and

Z. Kovacs, A Distributed Workflow and Product Data Management Application for the

Construction of Large Scale Scientific Apparatus, Advances in Workflow Management

Systems and Interoperability}, Istanbul, Turkey, August 1997.

[Halvey and Melby 2000] John K. Halvey, Barbara Murphy Melby, Business

process outsourcing : process, strategies, and contracts, John Wiley, New York,2000

[METEOR] METEOR project home page,

http://lsdis.cs.uga.edu/proj/meteor/meteor.html

[METEOR Model 3] Krys Kochut, METEOR Model 3, Draft Proposal, Version

1.0, LSDIS Lab, Department of Computer Science, the University of Georgia, July,

1999

163
[Miller et al. 98] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, H. Singh

“WebWork: METEOR’s Web-based Workflow Management System”, Journal of

Intelligent Information Systems, (JIIS) Vol. 10 (2), March 1998.

[Marek and Truszczynski 1993] V. Marek, M. Truszczynski, Non-monotonic

Logic, Context-Dependent Reasoning, Springer-Verlag, 1993

[Reichert and Dadam 1998] M. Reichert, P. Dadam, ADEPTflex - Supporting

Dynamic Changes of Workflows Without Loosing Control, Journal of Intelligent

Information Systems (JIIS), Special Issue on Workflow Management Systems, Vol. 10,

No. 2, pp. 93-129, March 1998

[Reichert and Dadam 98] M. Reichert and P. Dadam, ADEPT flex: Supporting

Dynamic Changes of Workflows Without Losing Control, Journal of Intelligent

Information Systems, 10 (2), March 1998.

[RosettaNet 2000] RosettaNet, www.rosettanet.org

[Saastamoinen1995] H. Saastamoinen, “On the Handling of Exceptions in

Information Systems”. PhD thesis, University of Jyvaskyla, 1995

[Sheth 97] Sheth, “From Contemporary Workflow Process Automation to

Adaptive and Dynamic Work Activity Coordination and Collaboration,” Proceedings of

the Workshop on Workflows in Scientific and Engineering Applications, Toulouse,

France, September 1997.

[Sheth et al. 96] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W.

Scacchi, J. Wileden, and A. Wolf, Eds. Report from the NSF Workshop on Workflow

and Process Automation in Information Systems, Technical Report UGA-CS-TR-96-

003, Dept. of Computer Sc., University of Georgia, October 1996.

http://lsdis.cs.uga.edu/lib/lib.html

[Sheth et al 97] A Sheth,D. Worah, K. Kochut, J. Miller, K. Zheng, D.

Palaniswami, S. Das, "The METEOR Workflow Management System and its use in

http://lsdis.cs.uga.edu/lib/lib.html

164
Prototyping Healthcare Applications", Proceedings of the Towards An Electronic

Patient Record(TEPR'97) Conference, April 1997, Nashville, TN.

[Sheth et al 1996] A. Sheth, K. J. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D.

Palaniswami, J. Lynch, and Shevchenko. “Supporting State-Wide Immunization

Tracking using Multi-Paradigm Workflow Technology”, In Proc. of the 22nd. Intnl.

Conference on Very Large Data Bases, Bombay, India, September 1996

[Sheth and Kochut 98] A. Sheth and K. Kochut, “Workflow Applications to

Research Agenda: Scalable and Dynamic Work Coordination and Collaboration

Systems,” in A. Dogac, L. Kalinechenko, T. Ozsu and A. Sheth, Eds. Workflow

Management Systems and Interoperability, NATO ASI Series F, Vol. 164, Springer

Verlag, 1998.

[Sheth et al 1999] A.P. Sheth, W.M.P. van der Aalst, and I.B. Arpinar.

"Processes Driving the Networked Economy: Process Portals, ProcessVortex, and

Dynamically Trading Processes". IEEE Concurrency, 7(3): 18-31, 1999.

[Strong and Miller 1995] D. Strong and S. Miller, “Exceptions and exception

handling in computerized information processes”, ACM Trans. Information System, 13,

2 (Apr. 1995)

[SWAP] Simple Workflow Access Protocol home page,

http://www.ics.uci.edu/~ietfswap/index.html

[Taylor 97] R. Taylor, Endeavors: Useful Workflow Meets Powerful Process,

Information and Computer Science Research Symposium, University of California at

Irvine, February 1997. URL: http://www.ics.uci.edu/endeavors/

[tpaXML 2000] IBM tpaXML, http://www.ibm.com/developer/xml/tpaml/b2b-

integration-with-tpa.pdf, November 6, 2000

http://www.ics.uci.edu/~ietfswap/index.html
http://www.ics.uci.edu/endeavors/
http://www.ibm.com/developer/xml/tpaml/b2b-integration-with-tpa.pdf
http://www.ibm.com/developer/xml/tpaml/b2b-integration-with-tpa.pdf

165
[Van Der Aslst 1999] W. van der Aslst. Inter-organizational workflows: an

Approach Based on Message Sequence Charts and Petri Nets. Information Systems,

1999

[Voorhoeve and Aalst 1997] M. Voorhoeve, W. Aalst, “Ad-hoc Workflow:

Problems and Solutions”, 36-40, DEXA Workshop 1997

[Wedekind 1997] H. Wedekind, “Specifying Indefinite Workflow Functions in

Ad-hoc Dialogs”, 30-35, DEXA Workshop 1997

[Weikum and Schek 1992] Concepts and Applications of Multi-level

Transactions and Open-Nested Transactions, in [Elmagarimid 1992] chapter 13.

[WfMC] Workflow Management Coalition Standards,

http://www.aiim.org/wfmc/mainframe.htm

[Willumsen et al 1993] Willumsen, G., Gulla, J. A., Lindland, O. I., and Seltveit,

A. H., An Integrated Environment for Validating Conceptual Models, The 6th

International Workshop on Computer-Aided Software Engineering (CASE'93),

Singapore, 1993

[Worah et al 97] D. Worah, A. Sheth, K. Kochut, J. Miller, "An Error Handling

Framework for the ORBWork Workflow Enactment Service of METEOR," Technical

Report, LSDIS Lab. Dept. of Computer Science, Univ. of Georgia, June 1997.

[Worah and Sheth 1997] D. Worah and A. Sheth, “Transactions in

Transactional Workflows”, in Advanced Transaction Models and Architectures, edited

by S. Jajodia and L. Kerschberg, Kluwer Academic Publishers, Boston, August 1997

[Yong 98] J. Yong, "The Respository system of METEOR workflow

management system", Master Thesis, Department of Computer Science, University of

Georgia, March 1998.

[Zhang et al. 1994] Zhang, A., Nodine, M., Bhargava, B., and Bukhres, O.,

Ensuring Relaxed Atomicity for Flexible Transactions in Multi-database Systems, In

http://www.aiim.org/wfmc/mainframe.htm

166
Proceedings of 1994 SIGMOD International Conference on Management of Data,

pages 67-78

[Zheng 97] K. Zheng, Designing Workflow Processes in METEOR2 Workflow

Management System M.S. Thesis, LSDIS Lab, Computer Science Department,

University of Georgia, June 1997.

[Zhou and Venkatesh 1999] Mengchu Zhou, Kurapati Venkatesh, "Modeling,

simulation, and control of flexible manufacturing systems: a Petri net approach",

Singapore; [River Edge], NJ: World Scientific, 1999

167

APPENDIX

PROCESS ANALYSIS

In our approach, a process system is considered as a reactive system that

maintains an ongoing interaction with its environment. It is assumed the all variables

that describe the properties of processes are taken from a set of variables, called

process variable set or vocabulary. Instances of those variables form the process

environment. Situation of the activities in processes at a certain point of time is called a

process state that is specified through task states and data states and the status of

workflow environment. Inter-state dependence constraints are enforced through

process transitions that are specified in JECA rules [Luo et al 2000]. Thus, each

process state S is associated with a JECA rule set R specifying process transitions. An

initial process state is where a process starts. It has a special incoming transition,

specified by a special JECA rule, called initial rule. The initial rule only triggers those

rules associated with initial process states. A final process state is where a process

terminates. It is associated with a special JECA rule, called final rule. The final rule

cannot trigger any rules. A process is a series of process states linked by process

transitions, starting from an initial process state, ending at a final process state.

Consider a JECA rule r and the process transition δ specified by r. Given JECA

rules ri, rk and rj, if ri triggers rk and rk triggers rj, then ri transitively triggers rj. Given

JECA rules r1, r2, …, rn, (n>=3) r1 transitively triggers rn if ri triggers ri+1, 1<= i <n. A

process execution sequence consists of a series of process states linked by triggered

JECA rules. The process execution is said to be in a deadlock if the last process state

is a not final state. A process execution sequence is an execution history of a process

168
instance. Each process instance is associated with a process specification (also called

process type).

TERMINATION

In rule execution, there is a danger of non-termination. We give a sufficient

condition for the termination of rule execution over a JECA rule set [Luo et al 2000].

We ensure termination of evaluation of J and C in JECA rule evaluation, we limit the

logic expressions used in specifying J and C components of JECA rules to be

quantifier free. Furthermore, we assume that facts that need to be checked in rule

evaluations are finite. Petri net has been extensively used as a verification tool.

Various system properties such as termination, liveness, boundness, et al. are verified

using this standard tool [Zhou and Venkatesh 1999]. To avoid any confusion about this

JECA rule modeling with common predicate rule modeling, we utilize an approach of

activity graph [Baralist et al 1995] to analyze business processes similar to Petri net.

As known, in Petri net, predicate rule evaluation is usually not considered. Similarly in

our research, we put this issue aside, that is, how to evaluate predicate rule will not be

our concern here.

Consider a JECA rule r (j, e, c, a). When event (e) occurs, r is triggered. In

other words, event (e) triggers JECA rule r. Action of JECA rules can generate events

that can trigger other JECA rules, which may include themselves. The action of those

triggered JECA rules may further trigger more JECA rules. This series of JECA rules

triggering forms a triggering graph. Consider an arbitrary JECA rule set R. Triggering

graph (TG) over R is a directed graph where each node corresponds to a rule ri that

belongs to R, and a directed arc (ri, rk) means that the execution of rule ri generates

events that trigger rule rk.

169
Consider a JECA rule set R, and TG over R. An irreducible rule set over R is a

subset of R, and includes only those JECA rules whose incoming arcs are in the

directed graph, TG. This irreducible rule set is generated by iterations of discarding a

rule that does not have an incoming arc in TG, and remove all its outgoing arcs. The

iterations continue until all the rules have been removed, or until all the remaining rules

have incoming arcs in the entire directed graph, TG. If the irreducible rule set over R is

empty, then rule execution on R is guaranteed to terminate. This is a sufficient

condition for termination of rule execution over rule set R. Assume that rule execution

will not terminate if the irreducible rule set over R is empty. If rule execution will not

terminate, there are always triggered rules. There must exist at least one triggering

cycle involving the same rules, say r1 and r2, in the same direction. That is, r1 trigger r2.

Thus, both r1 and r2 have incoming arcs in the directed graph, TG. So the irreducible

set over R is not empty. This contradicts with the assumption.

REACH-ABILITY

An important issue in process execution is whether a process can reach a

specific process state. In order to find out whether a modeled business process can

reach a specific process state as a result of a required functional behavior, we

developed the process graph. It is used to find such a sequence of triggering of

transactions that would transform a process state p0 to pi, where pi represents this

specific state.

A process state pi is said reachable from a process state m0 if there exist a

sequence of transitions that transforms a process state p0 to pi. A process state p1 is

said to be immediately reachable from p0 if firing a triggered transition in p0 results in

p1.

170
Consider a process specification, and associated JECA rule set R. Process

graph (PG) is a directed graph, where

• each node corresponds to a rule ri belongs to R.

• A directed arc (ri, rk) means rule ri enables rule rk.

• If ri in a direct arc (ri, rk) does not have incoming arcs, ri is the initial rule.

• If rk in a direct arc (ri, rk) does not have outgoing arcs, rk is the final rule.

• Initial rule transitively enables final rule.

• Irreducible rule set obtained from R is empty.

A process specification can only be correct if all possible process execution

sequences start from an initial process state, and end at a final state. Consider a

process specification, and associated JECA rule set R. If a process graph exists, the

initial rule transitively triggers the final rule. All process execution sequences can only

start from initial process state because the initial rule is the only node in the process

graph that does not have any incoming arcs, but has outgoing arcs. Similarly, all

process execution sequences can only end at final process state because the final rule

is the only node in the process graph that does not have any outgoing arcs, but has

incoming arcs. Since irreducible rule set obtained from R is empty, rule execution is

guaranteed to terminate. Thus, all process execution sequences can only start from an

initial process state, and will end at a final state. So if a process graph can be obtained

from its associated process specification, the specification is correct.

BOUNDED-NESS

In process support systems, work-list server holds the working items. The

capacity of these servers to hold these working items are usually constrained, e.g.

memory constraint. It is important to be able to determine whether proposed process

execution strategies can prevent from the violation of the constraints, e.g., memory

171
overflow. To identify the existence of overflow in the modeled business process, the

bounded-ness of the process must be checked. To support bounded-ness check, a

token is used to associate with each process activity and a weight is used to associate

with each process transition. The number of working items for a process activity pa is

said to be k-bounded if the number of tokens associate with pa is always less or equal

to k for every process state p reachable from the initial state p0.

LIVE-NESS

A business process must be live. The concept of live-ness is closely related to

the deadlock situation. Four conditions that must hold for a deadlock to occur are

mutual exclusion of resources, resource hold and wait, no preemption, and circular

wait. A general requirement for a deadlock free process is that for all process state p,

which are reachable from the initial process state p0, it is ultimately possible to fire any

transition in the process by progressing through some firing sequence. The live-ness

criterion we employ in analyzing business processes is:

• A process specification can only be live if all possible process execution

sequences start from an initial process state, and end at a final state.

REVERSIBILITY

An important issue in the process supporting systems is the ability of these

systems for an error recovery. In case of errors or failure, these systems are required

to recover from the failure states and return to the preceding correct states or

equivalent state. A business process, with the initial process state p0, is said to be

reversible if for each process state p reachable from p0, p0 is reachable from p.

This reversibility requirement is sometimes too restrictive. A less restrictive and

more practical requirement is to find a state pi that for each marking p reachable from

p0, pi is reachable from p.

172
SYSTEM DEMONSTRATION

Here we are using the level 3 telecommunication application to show an

exception-handling scenario. In this application, Level 3 (L3) offers on-demand

bandwidth service to let contracted service providers (SP), such as ISP and DSL

providers accommodate their customers’ new data and voice applications. More

information about this application can be found in Chapter 1.

In this demonstration, we will generate an exception. This exception will then

be propagated to the exception handling system. This exception will be generated by

removing a task from OrbixWeb's implementation repository. The main purpose of the

demonstration is to show how a case adapts to a new situation, i.e., how a case is

reused.

MECHANISM FOR CASE REUSE

As described previously, a case consists of three blocks: eib, cib, and aib.

Except for the content of eib, attributes in cib and aib can be modified to adapt to new

situations. This is what we call case reuse - obtaining a new case for the new situation

by changing a previous case. At this time, this technique is used to compact the case

repository, thus enhancing the efficiency of the exception handling system.

In this demonstration, we show how the handling scheme stored in the case

repository is modified to obtain a new case. This type of case reuse is called

parameter based case adaptation. When a case is used for a new situation without

modifications, it is called NULL adaptation. More information about case reuse can be

found in Chapter 5 and [Luo et al 2000].

DEMONSTRATION STEPS

In this demonstration, we first build the level 3 application, compile it, and then

deploy it. Inside the level 3 application, there is a task called check_identity that will

173
update the database with a record. We then remove this task from OrbixWeb's

implementation repository. An exception will be thrown because this task can not be

found by the OrbixWeb daemon. Then it will be propagated to the exception handling

coordinator.

The following are the steps of this demonstration:

1. Deploy the level 3 application.

2. Create a new instance for this application.

3. Remove the task of check_identity from OrbixWeb's implementation

repository.

4. When the exception is propagated to the exception handling coordinator,

which can be verified by looking into the monitor file or the exception

handling coordinator execution trace, launch the exception handling client

GUI tool.

5. First make sure the exception-handling client is connected to the exception

handling coordinator. If yes, then retrieve the exception record propagated

by clicking "Retrieve" button. When a record appears in the exception

retrieval panel, click on that record, and then click the button "Handle".

6. Now go to the case search panel, click "Search" button. Since the case

repository does not contain any similar cases, a case template will be

generated. Click on the case, the click "Analyze" button to analyze the

case.

7. Go the case analysis panel, make the following changes to the case:

Compensation_mode: auto

Compensation_type: exception_handler

Conpensation_action: register_server

Number of param: 2

174
Workflow: l3

Task name: check_identity

Rework_mode: auto

Rework_type: restart

Rework_task_name: check_identity

Rework_host: mitchell.cs.uga.edu

CRP_name: _ehc_wft

8. Now click the "Action" button. Then go to the take action panel, click the

button "Take Action".

9. You will see the result that the task of check_identity is registered, and it is

re-restarted.

10. Save this case into the repository by clicking on the button "Write back".

11. Uninstall the level 3 application.

12. Re-install the level 3 application. Remove the check_indentity task from

OrbixWeb's implementation repository.

13. Create a new instance of level 3 application. Then finish the task of sender,

you will then see that an exception is propagated to the exception handling

coordinator and handled automatically by retrieving this previous captured

case. This type of case reuse is called NULL case adaptation because the

case is not modified.

14. Uninstall the level 3 application.

15. Re-install the level 3 application. Remove a different task called

"connection_request" from OrbixWeb's implementation repository.

16. Create a new instance of level 3 application. Then finish the task of sender,

you will then see that an exception is propagated to the exception handling

coordinator and handled automatically by retrieving this previous captured

175
case. Since that case contains solution for handling solutions for the task of

"check_identity", it must be modified to adapt this new situation. So the task

name in this case is modified from "check_identity" to "connection_request",

the task state string and task parameter string are modified accordingly.

Thus, a new case is created by reusing a previous acquired case. This type

of case reuse is called parameter based case adaptation. When the whole

block of cib and/or aib are modified, which means a new cib and/or aib are

used, it is called substitution based case adaptation.

	BUSINESS PROCESSES
	TARGETED PROBLEMS
	CONTRIBUTIONS
	EXCEPTION HANDLING
	Exception handling and adaptive workflow
	Knowledge based exception handling
	Cross-organizational exception handling

	ADAPTIVE WORKFLOW
	ADVANCED TRANSACTION MODELS
	Nested transactions
	Open nested transactions
	Sagas
	ConTracts
	Stream flow
	Flexible transactions
	Multi-level transactions

	CROSS-ORGANIZATIONAL WORKFLOW
	PROCESS MODELING
	Process ownership
	Process autonomy
	Process accessibility
	Process monitoring
	Process control

	Process interaction

	PROCESS DYNAMICS
	Process inter-operability
	Process contracting
	Contract fulfillment
	Service delivery
	Process monitoring
	Process control

	EXCEPTION HANDLING
	Intra-WfMS exception handling
	Cross-organizational exception handling

	3-D EXCEPTION MODEL
	EXCEPTION HANDLING METHODS
	PROBLEMS AND PROPOSED SOLUTION
	EXCEPTION SPECIFICATION
	EXCEPTION HANDLERS
	EXCEPTION HANDLING CASE
	COORDINATION MODE
	Immediate mode
	Deferred mode
	De-coupled mode
	Free mode
	Close Mode

	COORDINATION ANALYSIS
	Immediate mode
	Interface exposure
	Correctness issue

	Deferred mode
	Interface exposure
	Correctness issue

	De-coupled mode
	Interface exposure
	Correctness issue

	Free mode
	Interface exposure
	Correctness issue

	Close mode
	Interface exposure
	Correctness issue

	REASONING MECHANISM
	Case based reasoning

	CONCEPT BASED CASE MANAGEMENT
	Case acquiring
	Case retrieval

	CASE ADAPTATION
	METEOR ARCHITECTURE
	Workflow builder service
	Workflow repository service
	Workflow enactment and management services

	ORBWORK ENACTMENT SYSTEM
	ORBWork architecture
	ORBWork scheduler
	Exception handling

	ORBWORK IMPLEMENTATION
	Task schedulers
	Task managers
	Data objects
	ORBWork servers
	ORBWork manager

	SYSTEM ARCHITECTURE
	Process instance and data backup
	Restart an instance
	Retry and alternative task implementation

	EXCEPTION DESIGN AND HANDLING
	SYSTEM MODE
	Automatic mode
	User intervention mode

	ANALYTICAL ASSESSMENT
	USE-CASES ASSESSMENT
	Immediate mode scenario
	Deferred mode scenario
	De-coupled mode scenario
	Free mode scenario
	Close Mode scenario

	EXPERIMENTAL ASSESSMENT
	Experiment design
	Experiment - Service subscription application
	Application description
	Experiment purpose
	Exception generation
	Result evaluation

	Experiment - dsl application
	Application description
	Experiment purpose
	Exception generation
	Result evaluation
	Application description
	Experiment purpose

	Experiment - Infant transportation application
	Exception generation
	Result evaluation

	Experiment - Level 3 Telecommunication Infrastructure provider application
	Application description
	Experiment purpose
	Exception generation
	To generate an exception that can be handled by the ORBWork system, we have tried several approaches. We found that if we supply an incorrect or inappropriate statement to the database systems (we are using Mini-SQL database server), an exception will
	Result evaluation

	Experiment - Future and stock trading application
	Application description
	Experiment purpose
	Exception generation
	Result evaluation

	CONCLUSION AND FUTURE CONSIDERATIONS
	Summary
	Future directions

	PROCESS ANALYSIS
	Termination
	Reach-ability
	Bounded-ness
	Live-ness
	Reversibility

	SYSTEM DEMONSTRATION
	
	Mechanism for case reuse
	Demonstration steps

