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ABSTRACT
This paper exploits a large number of self-labeled emotion tweets as
the training data from the source domain to improve emotion iden-
ti�cation in target domains (i.e., blogs and fairy tales), where there
is a short supply of labeled data. Due to the noisy and ambiguous
nature of self-labeled emotion training data, the existing domain
adaptation methods that typically depend on high-quality labeled
source-domain data do not work satisfactorily. This paper describes
an adaptive source-domain training instance selection method to
address the problem of noisy source-domain training data. The
proposed approach can e�ectively identify the most informative
training examples based on three carefully designed measures: con-
sistency, diversity, and similarity. It uses an iterative method that
consists of the following steps in each iteration: selecting infor-
mative samples from the source domain with the informativeness
measures, merging with the target-domain training data, evalu-
ating the performance of learned classi�er for the target domain,
and updating the informativeness measures for the next iteration.
It stops until no new training instance is selected or in a desig-
nated number of iterations. Experiments show that our approach
performs e�ectively for cross-domain emotion identi�cation and
consistently outperforms baseline approaches across four domains.

CCS CONCEPTS
• Information systems → Sentiment analysis; • Computing
methodologies → Natural language processing;
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1 INTRODUCTION
Emotion identi�cation aims to automatically identify people’s �ne-
grained emotions (e.g., anger, disgust, fear, joy, sadness, and sur-
prise) expressed in text. As the emotion-rich content grows rapidly
on the Web, there is an increasing need to develop tools and tech-
niques for emotion identi�cation from various domains. Some re-
search e�orts have been devoted to identifying emotions from fairy
tales and blog posts [1, 2].

A primary bottleneck to date for emotion identi�cation is the lack
of su�ciently large labeled training data. Statistical classi�cation
algorithms usually require a large amount of labeled data to train
a reliable classi�er. However, manually labeling emotions in text
is labor-intensive and time-consuming. Moreover, compared with
other annotation tasks such as entity or topic detection, a human
annotator’s judgment of emotions in text might be di�erent from
the ones an author intended to convey, and hence, both the size
and the quality of training data are the bottlenecks for successful
emotion identi�cation.

Domain adaptation [14, 27] has emerged as an e�ective approach
to addressing the problem of insu�cient high-quality training data.
It assumes the same classi�cation problem in di�erent domains
share some inherent properties and thus one domain’s training data
can help another domain’s classi�er training. Typically, the source
domain has a large labeled training dataset, while the target domain
has very few labeled training instances. In emotion identi�cation,
it has been challenging to apply domain adaptation as there is no
established high-quality labeled source-domain training data.

To tackle the challenge of large labeled training data, a recent
study [29] exploits emotion hashtags in tweets to automatically
infer their emotion labels. For example, we can obtain the following
instance 〈“Exactly one month until christmas! Woot #excited”,
joy〉, where the trailing emotion hashtag “#excited” is stripped from
the tweet and is used to label this tweet with emotion joy. We
call this label extracting process as “self-labeling”. In this way, a
large number of “self-labeled” emotion tweets can be automatically
collected from Twitter. It is appealing to adapt these tweets to help
identify emotions in target domains (e.g., blogs and fairy tales)
where the labeled instances are in short supply.

However, the extracted labels might be noisy or ambiguous. We
show a few noisy tweets as an example: 1) the emotion label of
a tweet might not be consistent with its content. A tweet may
convey a mixture of emotions, whereas not all the emotions can be
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Table 1: Emotion tweets: the emotion label in front of each
tweet is inferred from the emotion hashtag in bold; in-
formal expressions (misspellings, abbreviations, etc.) are
under-waved.

#1
Fear: “Amazing night with my baby. Hope she liked our
anniversary present.

:::
Alil early but whatever. :) hopefully

:::::
tmmrw goes as planned. #fear”

#2
Sadness: “Why does my phone have to die so early in the
morning.

::::::::
#canttweet #depressing”

#3 Anger: “My phone
:::
batt dies so

::::
quiick ....! #annoyed”

inferred if the author did not include hashtags for all the embedded
emotions. The �rst half of tweet #1 in Table 1 conveys emotion joy
that is not included in its label – fear; 2) features of Twitter and
target domains (e.g., blogs and fairy tales) are di�erent. As Table
1 shows, informal expressions, such as misspellings (“quiick” in
tweet #3), abbreviations (“Alil” and “tmmrw” in tweet #1, “batt” in
tweet #3) and multi-word concatenations (“#canttweet” in tweet
#2) are common on Twitter. However, these expressions are rarely
used in target domains.

Existing domain adaptation methods often consider the source-
domain training data has high-quality labels and take all training
data in domain adaptation. For example, Jiang et al. [16] merge the
entire source-domain data with the target-domain training data,
while overweighting the target-domain data in training. However,
we argue that it is more bene�cial to include the informative source-
domain data than to include all of the source-domain data, which
will be con�rmed in the experiment section. Moreover, the majority
of the domain adaptation methods are limited to binary sentiment
classi�cation but our problem involves multiple emotion classes.
For example, Dai et al. [8] propose a variation of boosting to weight
training instances, which handles binary classi�cation only.

One may also wonder that the labeled training data in sentiment
analysis [5, 26, 28] can be possibly applied to emotion identi�cation.
Sentiment analysis has been studied for more than a decade and ac-
cumulated sizable labeled examples that seem to share some labels
with emotion analysis. However, there are several factors making it
di�cult to use such training data. First, most studies in sentiment
analysis deal with binary classi�cation while emotion identi�cation
is a multi-class �ne-grained classi�cation problem. The labels be-
tween the two domains, although sharing some similarity, are not
consistent. Second, the majority of research on sentiment analysis
deals with richer information, e.g., a product review document,
while we focus on identifying emotions from more limited context,
e.g., a sentence. This di�erence will very likely result in di�erent
feature distributions. Therefore, training data for sentiment analysis
cannot be e�ectively used in emotion identi�cation.

To address the above challenges, we propose an adaptive frame-
work to iteratively select informative tweets out of self-labeled
noisy tweets to enrich the target domain training data. An emotion
identi�cation classi�er will be trained on the enriched training
data to achieve a better accuracy for target domain emotion iden-
ti�cation. Our framework has three unique contributions. (1) The
source-domain instances are selected based on the three carefully

designed informativeness measures: consistency, diversity, and sim-
ilarity. Consistency measures the con�dence of a tweet’s label being
consistent with its content, estimated by the labeled data from
both source and target domains. Diversity encourages the selection
of source instances containing features that are infrequent or un-
derrepresented in the target domain. Similarity promotes source
instances that are very similar to target domain instances. (2) The
process can adaptively and progressively extract source-domain
instances with the dynamically updated informativeness measures
in each iteration. Its adaptive nature makes the process converge
quickly with the outcome classi�ers outperforming those by other
approaches. (3) We have done an extensive evaluation on four
target domains. Results show that our approach is e�ective for
cross-domain emotion identi�cation and consistently outperforms
several baseline approaches.

2 RELATEDWORK
Recently emotion-related studies are getting increasing attentions:
leveraging emotions to predict review helpfulness [21], extract-
ing emotion lexicons [6], intervening emotion contagion in social
network [17], and predicting players’ emotional responses during
games [25]. When it comes to text-based emotion identi�cation,
many rule-based approaches [23, 24, 36] have been proposed. These
approaches usually derive the emotion strength score of a sentence
based on its component words whose emotion strength scores are
prede�ned in a knowledge base. Several e�orts on supervised meth-
ods [13, 30, 31] have been tested on a few thousands of sentences,
partly due to the labor intensive nature of the manual labeling
task. To ease the labeling task, there are some studies on how to
automatically create labeled emotion dataset at the document [18],
sentence [33], and tweet [22, 29, 32] levels.

Domain adaptation has attracted attention recently [27]. Pre-
vious work along di�erent lines includes techniques for domain
adaptation via regression-tree adaptation [7], feature alignment
[26], dimensionality reduction [28], deep learning [14], and boost-
ing [34]. Our work di�ers from prior studies in the following ways.
First, it can identify �ne-grained multi-class emotions (e.g., anger,
disgust, fear, joy, sadness, and surprise) from text. Despite the large
body of prior studies on domain adaptation, most of them deal
with binary sentiment classi�cation only [5, 14, 26, 34]. Second, the
problem of identifying emotions from sentences is more challeng-
ing than that of binary polarity classi�cation on product reviews
[5, 14, 26, 28], because the context information of the former (i.e.,
sentence) is more limited than that of the latter (i.e., review docu-
ment). Third, to reduce labeling e�orts, we use self-labeled noisy
emotion tweets instead of manually-labeled high quality ones as
source domain data. Our adaptive framework can select informative
tweets out of the noisy tweets and skip the low quality ones.

Since we explore this problem from the perspective of selecting
informative instances, and hence limit our attention to the instance-
based approaches. Jiang and Zhai [16] train an adaptive classi�er
on the union of both source and target domain instances, where
the target domain labeled data are assigned larger weights since
they are more representative of the target domain. Dai et al. [8]
extend the AdaBoost algorithm to adjust the weights of training
instances. Some studies [16, 37] apply a classi�er trained on target
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domain labeled data to identify “good” and “bad” instances from
source data: a source instance is considered to be a good (or bad)
one if it can be correctly (or incorrectly) classi�ed by the classi-
�er. In contrast, we attempt to select informative instances from
the incorrectly classi�ed source domain instances rather than the
correctly classi�ed source domain ones, because the fact that the
classi�er incorrectly classi�ed some source domain instances may
suggest that those instances contain information that the target
domain training data lacks. Data selection has been frequently used
in machine translation to select sentences that are very similar to
those in target data [3, 12, 15, 19]. By doing so, the formed training
data can hopefully better match the target data in text contents.
However, we �nd that selecting tweets that are similar to target
data is not su�cient, because our source domain tweets are noisy:
tweets with nearly identical content can have contradicting labels.
This makes it necessary to check whether tweets contain consistent
information about the target data or not before being selected.

3 PROBLEM DEFINITION
LetX be the observable feature space to represent the data in, andY
be the label space:Y = {anдer ,disдust , f ear , joy, sadness, surprise}.
The labeled tweet set (i.e., source domain labeled data) is denoted
by Ds

l = {(x
s
i ,yi ) ∈ X × Y | yi is the label associated with the

instance xsi }. Let Dt
l be the target domain (e.g., blogs and fairy

tales) labeled data, Dt
u be the target domain unlabeled data, and

Dt = Dt
l ∪ D

t
u be the overall target domain data. Our objective is:

Given a large source domain labeled dataset Ds
l and a target domain

labeled dataset Dt
l (|Ds

l | >> |D
t
l |), construct a classi�er ĉ : X → Y

that predicts emotion labels for target domain unlabeled instances.

4 THE PROPOSED APPROACH
We �rst describe the framework, and then present a scoring func-
tion that calculates source instances’ informativeness using three
factors: consistency, diversity, and similarity. Through informative-
ness measurement, highly informative source domain tweets will
be selected and added to target domain training data so that we can
obtain an improved classi�er using the enriched training data.

4.1 The Framework
The framework augments target domain labeled data Dt

l with a
subset of instances from source domain labeled data Ds

l to improve
overall classi�cation accuracy on target domain unlabeled data Dt

u .
For this purpose, we �rst train a classi�er using Dt

l and apply it to
Ds
l to select a subset of informative instances. If the label of a source

domain instance is correctly predicted by the classi�er, this instance
is regarded as redundant, i.e., the corresponding information is
already contained in the target domain instances. If the predicted
label is incorrect, then we consider this source domain instance as
a candidate for addition, because it may contain information that is
lacking in target domain labeled data. A scoring function calculates
its informativeness score and decides whether to select it.

The use of informative source instances with Dt
l can yield a new

classi�er. Ideally, one would expect this new classi�er to correctly
classify more target domain instances. However, it may misclassify
the target domain labeled instances that were correctly classi�ed

Algorithm 1: The framework
Input: Ds

l , Dt
l , Dt

u , k , δ
Output: Adaptive classi�er ĉ : X → Y

1 Train an initial classi�er c0 with Dt
l ;

2 T tcorrect ← Set of instances from Dt
l that can be correctly

classi�ed by c0;
3 Initialize T ← Dt

l , T sinf o ← ∅, T
t
wronд ← ∅, T s ← Ds

l ;
4 repeat
5 T ← T ∪T sinf o ∪T

t
wronд ;

6 Train a classi�er c with T ;
7 T swronд ← Set of instances from T s that are misclassi�ed

by c ;
8 T sinf o ← Top k instances with informativeness score ϕ (·, ·)

greater than δ from T swronд ;
9 T s ← T s −T sinf o ;

10 T twronд ← Set of instances from T tcorrect that are
misclassi�ed by c;

11 until |T sinf o | < k ;
12 return c

initially, if a few false informative instances containing inconsis-
tent information were selected. When such misclassi�cation hap-
pens, we resort to a “counterbalancing” process to recover. This
is achieved by adding these misclassi�ed target domain labeled
instances with their correct labels to improve the classi�cation ac-
curacy. In other words, those misclassi�ed target domain labeled
instances are given extra weight in training data.

Algorithm 1 illustrates the framework. Speci�cally, the algorithm
takes as inputDs

l ,Dt
l ,Dt

u , a natural numberk indicating the number
of source instances to be added per iteration, and a real number δ
indicating the threshold for selecting source informative instances.
The output is an adaptive classi�er ĉ .

We start with training an initial classi�er c0 using Dt
l (line 1).

We initialize T tcorrect with instances from Dt
l that can be correctly

classi�ed by c0 (line 2). We initialize the overall training data T to
Dt
l , newly selected informative source domain instancesT sinf o to ∅,

counterbalancing target domain instances T twronд to ∅, and source
domain candidate instances T s to Ds

l (line 3).
In every iteration, we �rst add the newly selected informa-

tive instances T sinf o and counterbalancing target domain instances
T twronд into the overall training data T (line 5) that will be used
to train a classi�er c (line 6). We set T swronд to the instances in
T s whose labels are di�erent from those predicted by classi�er
c (line 7). As discussed earlier, these instances have a potential
to augment target domain training data by complementing them
with the information that they lack. We then set T sinf o to the top
k informative instances selected from T swronд based on a scoring
function that will be explained later (line 8). We remove the newly
selected informative source instancesT sinf o from source domain in-
stances T s (line 9). If a few false informative instances that contain
inconsistent information were selected and added to the training
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data, classi�er c may misclassify instances in T tcorrect that were
initially correctly classi�ed by c0. To counterbalance such an e�ect,
we set T twronд to the instances in T tcorrect that are misclassi�ed by
classi�er c (line 10). The instances in T twronд will be added to the
training data again (i.e., given extra weight) in a new iteration. As
we iteratively select informative instances out of T s , the remaining
informative instances inT s will be reduced. The entire process will
terminate when we cannot select su�cient number (k) of instances
in an iteration (line 11).

4.2 Selecting Informative Instances
To select informative instances from T swronд , we de�ne a source
instance’s informativeness score as the product of its consistency
(λc ), diversity (λd ), and similarity (λs ) factors:

ϕ (xsi ,yi ) = λ
c (xsi ,yi ) λ

d (xsi ) λ
s (xsi ,yi ), (1)

so that the instance will achieve a large informativeness score
only when all the three factors are large. If one factor is small, the
informativeness will be penalized after the multiplication. We now
show how to calculate each score.

4.2.1 Consistency. Consider the source domain self-labeled tweets
are noisy, we want to add a source domain instance that is unam-
biguously associated with a single label. Moreover, this label should
be consistent with the expressed emotion in text. As a counter ex-
ample, in addition to its single label fear, tweet #1 conveys another
emotion joy. Such instances contain inconsistent information and
therefore should not be selected. Speci�cally, we select instances
whose features provide strong support for its label and little support
for other emotions, based on Ds

l and Dt
l .

Let xa ∈ X be an arbitrary source or target instance, and yb ∈ Y
be an arbitrary emotion label. We want to construct a consistency
functionγ (xa ,yb ) to estimate the con�dence of labelyb ∈ Y being
consistent with instance xa ∈ X , veri�ed using Ds

l and Dt
l . For xa

and all its present features xa,m (i.e., its component words), we
de�ne xa,u and xa,v as the strongest supporting features for label
yb according to Ds

l and Dt
l , respectively:

xa,u = argmaxxa,m {p
s (yb |xa,m )} (2)

xa,v = argmaxxa,m {p
t (yb |xa,m )}, (3)

where ps (yb |xa,m ) and pt (yb |xa,m ) stand for the conditional prob-
abilities of yb given xa,m based on Ds

l and Dt
l , respectively. For

tweet #1, the strongest supporting features for its label fear would be
“hope” and “present” as:ps ( f ear |“hope”) = 0.509,pt ( f ear |“present”) =
0.214.

Similarly, we de�ne x ′a,u and x ′a,v as the strongest supporting
features of xa for any emotion y′b other than yb (y′b ∈ Y ∧y

′
b , yb ),

based on Ds
l and Dt

l , respectively:

x ′a,u = argmaxxa,m, y′b
{ps (y′b |xa,m )} (4)

x ′a,v = argmaxxa,m, y′b
{pt (y′b |xa,m )}. (5)

For tweet #1, the strongest supporting features for any label other
than fear would be “tmmrw” and “night” as: ps (joy |“tmmrw”) =
0.563, pt (joy |“niдht”) = 0.596. Next, we use the margin between

the largest conditional probability supporting yb and that support-
ing y′b to de�ne the consistency function as follows:

γ (xa ,yb ) = max
{
ps (yb |xa,u ),p

t (yb |xa,v )
}

−max
{
ps (y′b |x

′
a,u ),p

t (y′b |x
′
a,v )

}
,

(6)

where a large value indicates that: (1) xa has a strong supporting
feature for its label yb , i.e., large ps (yb |xa,u ) and/or pt (yb |xa,v );
and (2) according to both Ds

l and Dt
l , the chance that xa expresses

any emotion y′b other than yb is small, i.e., both ps (y′b |x
′
a,u ) and

pt (y′b |x
′
a,v ) are small. The larger the value, the more consistent the

label yb is with the expressed emotion in xa . A negative value indi-
cates that the labelyb is not the most likely label for xa . For example,
tweet #1 has a negative score:max (0.509, 0.214)−max (0.563, 0.596) =
−0.087, because besides emotion fear, it expresses the emotion joy
too. Such instances with negative scores are likely to contain in-
consistent information and thus are not selected.

Now, we apply the consistency function to measure the consis-
tency between source instance xsi and its label yi :

λc (xsi ,yi ) = γ (x
s
i ,yi ). (7)

4.2.2 Diversity. The measure of diversity emphasizes source do-
main instances that have distinctive features which are infrequent
in the target domain training data. A distinctive feature usually
carries e�ective information to identify the emotion, but if this
feature frequently appears in the training data, it may suggest that
the target domain already has abundant information about this
feature; and therefore adding the instances that contain this feature
may not further improve the classi�er. Rather than selecting the
source instances with the redundant information, it is preferable
to select the instances that complement the information that the
target domain lacks, i.e., the instances with distinctive features that
are less frequent in the training data.

For xsi , we apply Equations 2, 3 to �nd its two supportive features
xsi,u and xsi,v for its label yi based on Ds

l and Dt
l , respectively.

The most supportive feature is the one with the larger conditional
probability out of these two features:

xsi,w =



xsi,u , if ps (yi |xi,u ) ≥ pt (yi |xi,v )

xsi,v , otherwise.
(8)

For tweet #1, since ps ( f ear |“hope”) ≥ pt ( f ear |“present”), “hope”
is the most supportive feature. If “hope” is infrequent in the training
data, we want to promote this tweet to increase the diversity; other-
wise, we want to demote this tweet. Let d f (xsi,w ) be the number of
instances that contain feature xsi,w in the training data T (i.e., the
document frequency). We de�ne the diversity of xsi using the expo-
nential decay of the document frequency of its most supportive
feature xsi,w :

λd (xsi ) = e−θ df (x si,w ) , (9)

where θ is a decay constant. The smaller thed f (xsi,w ), the larger the
diversity with a max value of 1. In the extreme case of d f (xsi,w ) = 0,
this feature is source domain-speci�c and does not occur in the
target domain at all (e.g., slangs), and we instead use the next most
supportive feature that is present in the target domain.
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4.2.3 Similarity. Prior studies [10, 19] have shown that the
adaptability of machine translation models can be improved by
selecting source domain sentences that are similar to target domain
sentences, because these sentences can better match the test data
in the target domain. In this paper, besides the content similar-
ity, we also need to examine the label similarity. Otherwise, we
may select source instances (tweets) with nearly identical content
but labeled with di�erent emotion hashtags by the authors. Both
tweet #2 and #3 in Table 1 describe similar scenarios involving a
phone’s running out of battery, but they are labeled with sadness
and anger, respectively. Moreover, we emphasize the unlabeled
instances that classi�er c is uncertain about, and select source in-
stances (xsi ,yi ) ∈ T

s that are similar to them. When c is uncertain
about xtj ∈ Dt

u , it suggests that the target domain is lacking the
corresponding information to make a con�dent prediction.

Speci�cally, to encourage the selection of source instances that
share high content and label similarities with target domain unla-
beled instances that classi�er c is uncertain about, we de�ne the
similarity factor of xsi as:

λs (xsi ,yi ) = max
x tj ∈D

t
u

{πc (xsi ,x
t
j ) π

l (xtj ,yi ) π
u (xtj )}, (10)

where πc (xsi ,x
t
j ) denotes the content similarity between xsi and xtj ,

π l (xtj ,yi ) indicates how likely xtj and xsi share the same label yi ,
and πu (xtj ) represents the uncertainty of classi�er c regarding xtj .
To quantify the content similarity between xsi and xtj , we apply

cosine similarity to their weight vectors
−→
V s (xsi ) and

−→
V t (xtj ):

πc (xsi ,x
t
j ) =

−→
V s (xsi ) ·

−→
V t (xtj )

|
−→
V s (xsi ) | |

−→
V t (xtj ) |

. (11)

The purpose of weight vector representation is to boost the
weights of important words, so that xsi and xtj are similar to each
other only when they share important words. For (xsi ,yi ) ∈ T

s , we
want to assign larger weights to words that are strong indicators of
its label yi . For its m-th present feature xsi,m , we apply conditional
probability of yi , given this feature based on Ds

l , as its weight:

weiдhtsi,m = p
s (yi |x

s
i,m ). (12)

For a target domain unlabeled instance xtj ∈ Dt
u , we cannot

apply the above equation to calculate the conditional probability of
the label given a feature because its label is unknown. Thus, we use
a TF-IDF weighting scheme to assign weights instead. Since we are
conducting sentence-level emotion identi�cation and most features
usually occur once in a sentence, we skip the TF and apply only
the prob IDF from SMART notation [20]. Speci�cally, the weight of
the n-th present feature xtj,n of the instance xtj is:

weiдht tj,n = max


0, log10

N − d f (xtj,n )

d f (xtj,n )



, (13)

where N = |T | and d f (xtj,n ) is the number of instances that contain
feature xtj,n in training data T .

Besides the content similarity, we also need to consider the label
similarity. Otherwise, we may add instance xsi that is similar to

Table 2: Dataset statistics

Source Domain Target Domains
Name Twit Blog Diary Exp Fairy
Instance # 100,000 1,290 507 384 1,722

xtj in content but has a contradicting label. Since the label of xtj is
yet to be predicted, we cannot directly compare the labels of xtj and
xsi . Instead, we estimate how likely is xtj to share the same emotion
label yi of xsi . For xtj , we apply the consistency function (Equation
6) to measure the con�dence that xtj has the same label yi as xsi :

π l (xtj ,yi ) = γ (x
t
j ,yi ). (14)

The larger the value, the more likely that xtj and xsi share the same
label yi . When the value is negative, it is likely that the label of xtj
is di�erent from that of xsi .

Let y∗j be the most likely label predicted by c for xtj . We de�ne
the uncertainty of classi�er c regarding xtj as:

πu (xtj ) = 1 − p (y∗j |x
t
j ; c ). (15)

In summary, the informativeness scoring function achieves a large
value when all the following three conditions are satis�ed for a
source instance: (1) its label is consistent with its content, (2) it
contains a distinctive feature that is infrequent in target training
data, and (3) it is similar to a target domain unlabeled instance
whose label cannot be predicted by the classi�er c with con�dence.

5 EXPERIMENTS
For the source domain data, we used the emotion hashtags in [35]
as �ltering keywords, and collected 100K emotion tweets as the
source data Twit. We used four sentence-level multi-class emo-
tion datasets as target domain data: Blog [2], Diary [24], Exp [23]
(sentences describing personal experiences), and Fairy [1]. These
datasets have di�erent emotion classes, which brings extra com-
plexity to the experiments. For example, Diary has the emotions
interest and shame, but Blog does not. To concentrate on the adap-
tation problem, we focus on emotion classes which are common
to every dataset: anger, disgust, fear, joy, sadness, and surprise. The
sizes of all the datasets are shown in Table 2. We observe that these
datasets are relatively small compared with Twit (100K) – Diary
and Exp contain about 500 sentences. We believe the proposed
algorithm that exploits Twitter data could be helpful for emotion
identi�cation in these cases.

We performed the same data preprocessing on all the datasets.
Speci�cally, we lower-cased all the words; replaced letters/punctuation
marks that are repeated with the same two letters/punctuation
marks (e.g., “cooool”→ “cool”, “!!!!!”→ “!!”); and normalized some
frequently used informal expressions (e.g., “ll”→ “will”). For Twit,
we replaced user mentions (e.g., “@Justin”) with “@user” to anonymize
users; and stripped hash symbols (“#today”→ “today”).

We used a logistic regression classi�er in LIBLINEAR [11] for
classi�cation because: (1) it is very fast, and (2) it natively supports
probability output that is used to calculate uncertainty in Equation
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15. We experimented with di�erent feature representations: uni-
grams, bigrams, unigrams and bigrams, and found that the unigram
representation achieves the best performance for all the baseline
approaches. So we report results using unigrams. We performed
frequency-based feature selection: the unigrams appearing in at
least �ve di�erent tweets in Twit or at least two di�erent sentences
in other datasets were selected as features. For each dataset, we
applied �ve-fold cross validation where four folds were used as
target domain labeled data and the remaining fold was used as test
data. We repeated this �ve times and the average of micro-averaged
F1 scores in �ve folds was used for performance measurement.

We use CDS to abbreviate the proposed method . To evaluate
the contribution of each factor, we use C, D, and S to abbreviate
three variants of CDS by using only Consistency, only Diversity
and only Similarity factors, respectively. We set exponential decay
constant θ = 0.05. We set number of selected informative instances
per iteration k = 0.05 |Dt

l |. That is 5% of the labeled instances
in target domains. We empirically set informativeness threshold
δ = 0.0005 as its default value. We will study the e�ect of changing
k and δ later. We used add-0.5 smoothing [20] to estimate the
conditional probabilities of a label given a feature: e.g., ps (yi |xsi,m )

and pt (yi |x
s
i,m ).

5.1 Baseline Approaches
Most of existing studies on domain adaptation focus on binary sen-
timent classi�cation and they are not applicable for our multi-class
emotion classi�cation problem [5, 14, 26]. Therefore, we compare
CDS against the following �ve approaches that support multi-class
classi�cation-based domain adaptation instead. Need to mention
that prior studies [4, 9] �nd most of the following baselines surpris-
ingly di�cult to beat.
Source Only (SO): Without any adaptation, we directly apply the
classi�er trained on source Twit to target datasets.
Target Only (TO): Since the target domain training data is more
representative of target domains than Twit is, we train classi�ers
using only the target domain training data.
Feature Augmentation (FA): The idea is to “augment the feature
space of both the source and target data and use the result as input
to a standard learning algorithm” [9]. After feature augmentation,
the new feature space contains three sub-spaces: source domain
speci�c feature space, target domain speci�c feature space and
source-target-domain overlapping feature space. In the process of
training on the combination of the source and target domain train-
ing data, the classi�er can select and apply distinctive features from
the augmented feature space.
Feature Injection (FI): The idea is to �rst train a source classi-
�er using only the source data. Then, this classi�er is applied to
both the labeled and unlabeled data in the target domain, and its
probability outputs (i.e., the probabilities of x j expressing di�erent
emotions) will be injected as additional features. A target classi�er
will be trained using the target data after feature injection [9].
Balance Weight (BW): Given that labeled instances in the tar-
get domain are more representative of the target domain than the
source instances, the idea is to assign larger weights for the target
instances so that the weighted sum of target instances equals that

Table 3: Results for all approaches on four target datasets.
For each row, the best approach is in bold, the second best is
underlined, and the

:::::
third

:::
best is under-waved.

Micro-averaged F1
Datasets SO TO FI FA BW C D S CDS
Blog 0.5054 0.6488 0.6930

::::
0.6969 0.6922 0.6984 0.6868 0.6915 0.7008

Diary 0.4870 0.4910 0.5423 0.5383 0.5621
::::
0.5816 0.5246 0.5955 0.6092

Exp 0.5261 0.5053 0.5729 0.5834
::::
0.6379

::::
0.6379 0.5598 0.6691 0.6899

Fairy 0.4210 0.6574 0.6684 0.6754 0.6702
::::
0.6707 0.6527 0.6701 0.6812

Average 0.4849 0.5756 0.6191 0.6235 0.6404
::::
0.6472 0.6060 0.6566 0.6703

of source instances [16]. The weight of every instance in Dt
l is set

to
|Ds

l |

|Dt
l |

, and then a classi�er is trained on Ds
l ∪ Dt

l .

5.2 Evaluations on Domain Adaptation
Table 3 presents the experimental results in micro-averaged F1 met-
ric obtained by all approaches on four datasets. We observe that:
(1) in descending order of the averages of their micro-averaged F1
across all datasets, these approaches rank as follows: CDS (0.6703), S
(0.6566), C (0.6472), BW (0.6404), FA (0.6235), FI (0.6191), D (0.6060),
TO (0.5756), SO (0.4849); (2) CDS outperforms all the baseline ap-
proaches on every dataset; however, the di�erence between CDS
and BW on F1 metric is not statistically signi�cant (with p-values
in parenthesis): Blog(0.204), Diary(0.151), Exp(0.092), Fairy(0.164);
part of the reason could be the high variance caused by the rel-
atively small number of target domain instances in experiments.
(3) Among the component factors, Similarity (0.6566) performs the
best, followed by Consistency (0.6472) and Diversity (0.6060). (4) [9]
�nds that FA performs worse when the source and target domains
are very similar (i.e., SO performs similar to or better than TO);
In contrast, if the source and target domains are di�erent (i.e., SO
performs worse than TO), FA tends to outperform other approaches.
This is corroborated in our experiment: FA performs the best among
all the baselines on Blog and Fairy, where as SO performs worse
than TO. Lastly, (5) BW outperforms other baselines on Diary and
Exp, where the performance of SO is similar to or better than that
of TO. This seems to suggest that BW complements FA on datasets
where the source and target domains are very similar.

The key di�erence between CDS and the baseline is that CDS
doesn’t use all the tweets from the self-labeled noisy tweets. Instead,
it selects the most informative ones that have more potential to
boost emotion classi�cation in target domains. The results that CDS
consistently outperforms baselines suggest that the combination
of consistency, diversity and similarity is e�ective at selecting the
informative tweets for cross-domain emotion identi�cation.

5.2.1 Influence of the Parameters: k , δ . We vary, k , the number
of selected informative instances per iteration, from 0.05 |Dt

l | to
0.5 |Dt

l | (i.e., 5% to 50%), to show how it impacts results in Figure 1.
The general trend is that micro-averaged F1 slowly decreases as we
select more instances per iteration across all the datasets, because
target labeled data gets diluted faster with source data. The best
result in micro-averaged F1 is achieved when the proportion is 0.05.

The informativeness score (Equation 1) can be negative under
two conditions: either consistency λc (xsi ,yi ) < 0 or label similarity
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Figure 1: In�uence of the Parameters. Left: varying the number of selected informative instances (k). Right: varying the infor-
mativeness threshold (δ )
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(d) Fairy

Figure 2: Results of applying di�erent strategies to select informative instances on four datasets.

π l (xtj ,yi ) < 0. In practice, we skipped the instances that satisfy
either condition because such instances are likely to contain in-
consistent information. We increase the informativeness threshold
δ from 0 and show how it in�uences results in Figure 1. When
we increase δ from 0 to 0.0002, the average of micro-averaged F1
increases from 0.6498 to 0.6621, because we are selecting better
tweets of larger informativeness. When δ is between 0.0002 and
0.0008, the average of micro-averaged F1s on all datasets is ≥ 0.66.
When we increase δ beyond 0.0008, the general trend is that F1
starts decreasing on almost all the datasets, while decreasing faster
on Diary and Exp. By further increasing δ , we make the bar for

selecting informative tweets so high that we cannot obtain enough
informative tweets. It is important to mention that the reason δ is
very small is that δ is the multiplication of several small factors
(refer to Equations 1, 10).

5.2.2 Evaluations of Instance Selection Strategies. We evaluate
the strategies for the selection of informative instances to show
the e�ectiveness of selecting instances out of T swronд (instead of
T s ). We de�ne several variants of CDS with the following changes:
CDS-ALL selects instances fromT s ; CDS-CORR selects instances
from T s that are correctly classi�ed by c . RANDOM is a baseline
approach that randomly selects instances from T s during each



WI ’17, August 23-26, 2017, Leipzig, Germany Wenbo Wang, Lu Chen, Keke Chen, Krishnaprasad Thirunarayan, and Amit P. Sheth

iteration. We let each approach run up to 100 iterations and the
result remains at the value of the last iteration unless one approach
meets the stopping condition early.

We show the results of applying these four selection strategies
in Figure 2. In descending order of the micro-averaged F1, the
strategies rank as follows: CDS, CDS-ALL, CDS-CORR, Random,
which is consistent across all datasets, with the exception of CDS-
ALL (0.6112) performing marginally better than CDS (0.6092) on
Diary. Among all the strategies, CDS improves F1 with the least
number of iterations. The reason why CDS improves F1 faster than
CDS-ALL and CDS-CORR is that we feed CDS with instances from
T swronд which are incorrectly classi�ed by classi�er c . Some of
these instances contain information that is lacking in the target
domain. Since the input of CDS-ALL is a super set of CDS, it usually
achieves similar results in the end, but it takes far more iterations
for CDS-ALL to terminate. The RANDOM strategy is not a good
choice because it results in performance declines on Blog, Exp, and
Fairy, and barely improves the performance on Diary.

6 CONCLUSIONS
We studied the problem of leveraging self-labeled noisy Twitter
data to improve emotion identi�cation across di�erent domains
via adaptive instance selection. We proposed a framework that it-
eratively selects tweets that are informative about target domains
using criteria based on three carefully designed measures: consis-
tency, diversity, and similarity. This approach has the following
advantages: (1) Unlike most of the prior work that support only bi-
nary cross-domain sentiment classi�cation, it supports multi-class
�ne-grained cross-domain emotion identi�cation. (2) It can con-
sume self-labeled noisy tweets to select the most informative ones
to improve target domain emotion identi�cation in an adaptive
and progressive way. (3) Extensive experiments on four target do-
mains show that our approach is e�ective for cross-domain emotion
identi�cation and consistently outperforms baseline approaches.
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